Skip to main content

Biodegradable Polymers

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abatangelo, G., Barbucci, R., Brun, P., Lamponi, S. 1997. Biocompatibility and enzymatic degradation studies on sulphated hyaluronic acid derivatives, Biomaterials 18(21), 1411–1415.

    Article  Google Scholar 

  • Allcock, H.R. 1972. Phosphorus-Nitrogen Compounds. Cyclic, Linear, and High Polymeric Systems, Academic Press, New York.

    Google Scholar 

  • Allcock, H.R. 1990, Polyphosphazenes as new biomedical and bioactive materials, in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin, R. Langer, eds.), Ch. 5, pp. 163–193, Marcel Dekker, New York.

    Google Scholar 

  • Allcock H.R. 1998, Functional polyphosphazenes, in: Functional Polymers. Modern Synthetic Methods and Novel Structures (A.O. Patil, D.N. Schulz, B.N. Novak, eds.), Vol. 704, Ch. 18, pp. 261–275, ACS Symposium Series, Washington.

    Google Scholar 

  • Allcock, H.R., Kwon, S. 1989. An ionically cross-linkable polyphosphazene: Poly[bis(car-boxylactophenoxy)phosphazene] and its hydrogels and membranes, Macromolecules 22, 75–79.

    Google Scholar 

  • Allcock, H.R., Fuller, T.J., Mack, D.P., Matsumura, K., Smeltz, K.M. 1977. Phosphazene compounds. Synthesis of poly[(amino acid alkylester)phosphazenes], Macromolecules 10, 824–830.

    Article  Google Scholar 

  • Allcock, H.R., Fuller, T.J., Matsumura, K. 1982. Hydrolysis pathways for aminophosphazenes, Inorg. Chem. 21, 515–521.

    Article  Google Scholar 

  • Allcock, H.R., Pucher, S.R., Scopelianos, A.G. 1994. Synthesis of poly(organophosphazenes) with glycolic acid ester and lactic acid ester side groups-Prototypes for new bioerodible polymers, Macromolecules 27, 1–4.

    Google Scholar 

  • Amass, W., Amass, A., Tighe, B. 1998. A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies, Polym. Int. 47, 89–144.

    Article  Google Scholar 

  • Amiel, G.E., Sukhotnik. I., Kawar, B., Siplovich, L. 1999. Use of N-buty l-2-cyanoacrylate in elective surgical incisions — long-term outcomes, J. Am. Coll. Surg. 189(1), 21–25.

    Article  Google Scholar 

  • Anderson, J.M. 1986. In vivo biocompatibility studies: perspectives on the evaluation of biomedical polymer biocompatibility, in: Polymeric Biomaterials (E. Piskin, A.S. Hoffman, eds.), pp. 29–39, Martin Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Anderson, A.B., Clapper, D.L. 1998. Coatings for blood-contacting devices, Med. Plast. Biomat. 3, 16–20.

    Google Scholar 

  • Andriano, K., Daniels, A.U., Heller, J., 2000. In vitro and in vivo degradation studies of absorbable poly(orthoester) proposed for internal tissue fixation devices, in: Biomaterials and Bioengineering Handbook (D.L. Wise, ed.), Ch. 25, pp. 577–601, Marcel Dekker, New York.

    Google Scholar 

  • Arem, A. 1985. Collagen modifications, Clin. Plast. Surg. 12, 209–220.

    Google Scholar 

  • Atala, A., Mooney, D.J., Vacanti, J.P., Langer, R. 1997. Synthetic Biodegradable Polymer Scaffold: Tissue Engineering, Birkhäuser, Boston.

    Google Scholar 

  • Atkins, T.W., Peacock, S.J. 1996. In vitro biodegradation of poly(beta-hydroxybutyratehy-droxyvalerate) microspheres exposed to Hanks’ buffer, newborn calf serum, pancreatin and synthetic gastric juice, J. Biomater. Sci. Polym. 7(12), 1075–1084.

    Google Scholar 

  • Auger, F.A., Rouabhia, M., Goulet, F., Berthod, F., Moulin, V., Germain, L. 1998. Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels: clinical and fundamental applications, Med. Biol. Eng. Comput. 36(6), 801–812.

    Google Scholar 

  • Bakker, D., van Blitterswijk, C.A., Hesseling, S.C., Koerten, H.K., Kuijpers, W., Grote, J.J. 1990. Biocompatibility of a polyether urethane, polypropylene oxide, and a polyether polyester copolymer. A qualitative and quantitative study of three alloplastic tympanic membrane materials in the rat middle ear, J. Biomed. Mater. Res. 24(4), 489–515.

    Article  Google Scholar 

  • Balazs, E.A. 1995. Hyaluronan biomaterials: Medical applications, in: Handbook of Biomaterials and Applications (D.L. Wise, ed.), pp. 2719–2741, Marcel Dekker, New York.

    Google Scholar 

  • Barrows, T.H. 1986. Degradable implant materials: a review of synthetic absorbable polymers and their application, Clin. Mater. 1, 233–257.

    Google Scholar 

  • Barrows, T.H. 1991. Synthetic bioabsorbable polymers, in: High Performance Biomaterials (M. Szycher, ed.), pp. 243–257, Technomic Publ, Lancaster, PA.

    Google Scholar 

  • Barrows, T.H. 1994. Bioabsorbable poly(ester-amides), in: Biomedical Polymers. Designed-to-Degrade Systems (S.W. Shalaby, ed.), pp. 97–116, Hanser Publ., Munich.

    Google Scholar 

  • Barrows, T.H., Grossing, D.M., Hegdahl, D.W. 1983. Poly(ester-amides): a new class of synthetic absorbable polymers, Trans. Soc. Biomater. 6, 109.

    Google Scholar 

  • Bartone, F.F., Shervey, P.D., Gardner, P.J. 1976. Long term tissue responses to catgut and collagen sutures, Invest. Urol. 13(6), 390–394.

    Google Scholar 

  • Becker, M.A., Tuross, N. 1993. Initial degradative changes found in bombyx mori silk fibroin, in: Silk Polymers: Materials Science and Biotechnology (D. Kaplan, W. Adams, B. Farmer, C. Viney, eds.), ACS Symp. Ser., 544, 254–268.

    Google Scholar 

  • Benicewitz, B.C., Hopper, P.K. 1990, Polymers for absorbable surgical sutures-Part I, J. Bioact. Biocomp. Polym. 5 (October), 453–472.

    Google Scholar 

  • Benicewitz, B.C., Hopper, P.K. 1991. Polymers for absorbable surgical sutures-Part II, J. Bioact. Biocomp. Polym. 6 (January), 64–94.

    Google Scholar 

  • Bergsma, J.E., de Bruijn, W.C., Rozema, F.R., Bos, R.R.M., Boering, G. 1995. Late degradation tissue response to poly(L-lactide) bone plates and screws, Biomaterials 16, 25–31.

    Google Scholar 

  • Berry, A.R., Wilson, M.C., Thomson, J.W.W., McNair, T.J. 1981. Polydioxanone: a new synthetic absorbable suture, J. R. Coll. Surg. Edinburgh 26, 170–172.

    Google Scholar 

  • Beumer, G.J., van Blitterswijk, C.A., Ponec, M. 1994. Biocompatibility of a biodegradable matrix used as a skin substitute: an in vivo evaluation, J. Biomed. Mater. Res. 28(5), 545–552.

    Article  Google Scholar 

  • Bischoff, C.A., Walden, P. 1893. Ueber das glycolid und seine homologen, Berichte 26, 262–265.

    Google Scholar 

  • Boeree, N.R., Dove, J., Cooper, J.J., Knowles, J., Hastings, G.W. 1993. Development of a degradable composite for orthopaedic use: mechanical evaluation of an hydroxyapatite-polyhydroxybutyrate composite material, Biomaterials 14(10), 793–796.

    Article  Google Scholar 

  • Bogdansky, S. 1990. Natural polymers as drug delivery systems, in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin, R. Langer eds.), pp. 231–259, Marcel Dekker Inc., New York.

    Google Scholar 

  • Borgdorff, P., Van den Berg, R.H., Vis, M.A.., Van den Bos, G.C., Tangelder, G.J. 1999, Pump-induced platelet aggregation in albumin-coated extracorporeal systems, J. Thorac. Cardiovasc. Surg. 118(5), 946–952.

    Google Scholar 

  • Bos, G.W., Scharenborg, N.M., Poot, A.A., Engbers, G.H., Beugeling, T., Van Aken, W.G., Feijen, J. 1999. Blood compatibility of surfaces with immobilized albumin-heparin conjugate and effect of endothelial cell seeding on platelet adhesion, J. Biomed. Mater. Res. 47(3), 279–291.

    Article  Google Scholar 

  • Bouillot, P., Ubrich, N., Sommer, F., Duc, T.M., Loeffler, J.P., Dellacherie, E. 1999. Protein encapsulation in biodegradable amphiphilic microspheres, Int. J. Pharm. 181(2), 159–172.

    Article  Google Scholar 

  • Bouvier, M., Chawla, A.S., Hinberg, I. 1991. In vitro degradation of a poly(ether urethane) by trypsine, J. Biomed. Mater. Res. 25, 773–789.

    Article  Google Scholar 

  • Brem, H. 1990. Polymers to treat brain tumours, Biomaterials 11, 699–701.

    Article  Google Scholar 

  • Britritto, M.M., Bell, J.P., Brenckle, S., Huang, S.J., Knox, J.R. 1979. Synthesis and biodegradation of polymers derived from α-acids, J. Appl. Polym. Sci., Appl. Polym. Symp., 35, 405–414.

    Google Scholar 

  • Brookfield, P., Murphy, P., Harker, R., MacRae, E. 1997. Starch degradation and starch pattern indices; interpretation and relationship to maturity, Post. Biol. Technol. 11(1), 23–30.

    Google Scholar 

  • Brown, D.W., Lowry, R.E., Smith, L.E. 1980. Kinetics of hydrolytic aging of polyester urethane elastomers, Macromolecules 13, 248–252.

    Article  Google Scholar 

  • Brown, R.S., 2000. Studies in amide hydrolysis: the acid, base and water reaction, in: The Amide Linkage (A. Greenberg, C.M. Breneman, J.F. Liebman, eds.), pp. 85–114, John Wiley & Sons, New York.

    Google Scholar 

  • Brumback, G.F., McPherson, S.D., Jr. 1967. Reconstituted collagen sutures in corneal surgery. An experimental and clinical evaluation, J. Ophthalmol. 64(2), 222–227.

    Google Scholar 

  • Bulstra, S.K., Geesink, R.G., Bakker, D., Bulstra, T.H., Bouwmeester, S.J., van der Linden, A.J. 1996. Femoral canal occlusion in total hip replacement using a resorbable and flexible cement restrictor, J. Bone Joint Surg. Br. 78(6), 892–898.

    Article  Google Scholar 

  • Buron, F., Bourgois, R., Burny, F., Chaboteaux C., d’Hericourt, J El Banna, S., Pasteels, J.L., Sintzoff, S., Vienne, A. 1994. BOP: Biocompatible osteoconductive polymer: an experimental approach, Clin. Mater. 16, 217–221.

    Article  Google Scholar 

  • Caghey, G.H. 1991. The structure and airway biology of mast cell proteinases, Am. J. Resp. Cell. Mol. Biol. 4(5), 387–394.

    Google Scholar 

  • Capello, J., McGrath, K.P. 1993. Spinning of protein polymer fibers, in: Silk Polymers: Materials Science and Biotechnology (D. Kaplan, W. Adams, B. Farmer, C. Viney, eds.), ACS Symp. Ser. 544, 310–326.

    Google Scholar 

  • Cardia, G., Regina, G. 1989. Degenerative Dacron graft changes: is there a biological component in this textile defect? A case report, Vasc. Surg. 23(3), 245–247.

    Google Scholar 

  • Carothers, W.H., Dorough, G.L., Van Natta, F.J. 1932. Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters, J. Am. Chem. Soc., 54, 761–772.

    Google Scholar 

  • Chambliss, W.G. 1983. The forgotten dosage form: enteric-coated tablets, Pharm. Technol. September, 124–140.

    Google Scholar 

  • Chandra, R., Rustgi, R. 1998. Biodegradable polymers, Progr. Polym. Sci. 23, 1273–1335.

    Article  Google Scholar 

  • Chapman, T.M. 1989. Models for polyurethanes hydrolysis under moderately acidic conditions: a comparative study of hydrolysis rates of urethanes, ureas and amides, J. Appl. Polym. Sci., Polym. Chem. 27, 1993–2005.

    Google Scholar 

  • Charles, G.G., Daniel, M. 1985. The synthesis of some potentially blood compatible heparin-like polymeric materials, in: Frontiers of Polymers and Advanced Materials, Advances in Biomedical Polymers Series (G.G. Charles, ed.), pp. 277–284, Plenum Press, New York.

    Google Scholar 

  • Chasin, M., Langer, R. 1990. Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker, New York.

    Google Scholar 

  • Chasin, M., Lewis, D., Langer, R. 1988. Polyanhydrides for controlled drug delivery, Biopharm. Manuf. 1, 33–46.

    Google Scholar 

  • Chasin, M., Domb., A., Ron, E., Mathiowitz, E., Langer, R., Leong, K., Laurencin, C., Brem, H., Grossman, S. 1990. Polyanhydrides as drug delivery systems, in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin, R. Langer, eds.), pp. 43–70, Marcel Dekker, New York.

    Google Scholar 

  • Choi, N.S., Heller, J. 1978. Drug delivery devices manufactured from poly(orthoesters) and poly(orthocarbonates), US Patent, 4 093 709, June 6.

    Google Scholar 

  • Choi, N.S., Heller, J. 1979. Erodible agent releasing device comprising poly(orthoesters) and poly(orthocarbonates), US Patent, 4 138 344, Feb. 6.

    Google Scholar 

  • Choi, Y.S., Hong, S.R, Lee, Y.M., Song, K.W., Park, M.H., Nam, Y.S. 1999. Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge, J. Biomed. Mater. Res. 48(5), 631–639.

    Article  Google Scholar 

  • Christel, P., Chabot, F., Leray, J.L., Morin, C., Vert, M. 1982. Biodegradable composites for internal fixation, in: Advances in Biomaterials. Biomaterials 1980, Vol. 3 (D.G. Winter, D.F. Gibbons, J. Plench, Jr., eds.), pp. 271–280, John Wiley & Sons, New York.

    Google Scholar 

  • Chu, C.C. 1981. Hydrolytic degradation of polyglycolic acid: Tensile strength and crystallinity study, J. Appl. Polym. Sci. 26, 1727–1734.

    Article  Google Scholar 

  • Chu, C.C. 1983. Survey of clinically important wound closure biomaterials, in: Biocompatible Polymers, Metals, and Composites (M. Szycher, ed.), Ch. 22, pp. 477–523, Technomic Publ. Co., Lancaster, PA.

    Google Scholar 

  • Chu, C.C. 1995. Biodegradable polymeric biomaterials: an overview, in: The Biomedical Engineering Handbook (J. D. Bronzino, ed.), pp. 611–626, CRC Press, Boca Raton.

    Google Scholar 

  • Chu, C.C., Williams, D.F. 1983. The effect of gamma irradiation on the enzymatic degradation of polyglycolic acid absorbable sutures, J. Biomed. Mater. Res. 17, 1029–1040.

    Article  Google Scholar 

  • Chu, C.C., Lee, K.H. 2000. The role of free radicals in degradation of biodegradable biomaterials, in: Biomaterials and Bioengineering Handbook (D.L. Wise, ed.), Ch. 5, pp. 157–177, Marcel Dekker, New York.

    Google Scholar 

  • Chu, C.C., Zhang, L., Coyne, L.D. 1995. Effect of gamma irradiation and irradiation temperature on hydrolytic degradation of synthetic absorbable sutures, J. Appl. Polym. Sci., 56, 1275–1294.

    Article  Google Scholar 

  • Chujo, K., Kobayashi, H., Suzuki, J., Tokuhara, S., Tanabe, M. 1967. Ring-opening polymerization of glycolide, Makromol. Chem. 100, 262–266.

    Google Scholar 

  • Chung, L.Y., Shmidt, R.J., Hamlyn, P.F., Sagar, B.F., Andrews, A.M. 1994. Biocompatibility of potential wound management products: Fungal mycelia as a source of chitin/chitosan and their effect on the proliferation of human F1000 fibroblasts in culture, J. Biomed. Mat. Res. 28, 463–469.

    Google Scholar 

  • Chvapil, M., Kronenthal, R.L., van Winkle, W. 1973. Medical and surgical applications of collagen, Int. Rev. Connect. Tissue Res. 6, 1–61.

    Google Scholar 

  • Ciapetti, G., Stea, S., Cenni, E., Sudanese, A., Marraro, D., Toni, A., Pizzoferrato, A. 1994. Cytotoxicity testing of cyanoacrylates using direct contact assay on cell cultures, Biomaterials 15(1), 63–67.

    Article  Google Scholar 

  • Cohn, D., Younes, H. 1988. Biodegradable PEO/PELA block copolymers, J. Biomed. Mater. Res. 22, 993–1009.

    Article  Google Scholar 

  • Cohn, D., Younes, H. 1989. Compositional and structural analysis of PELA biodegradable block copolymers degrading under in vitro conditions, Biomaterials 10, 466–474.

    Google Scholar 

  • Coleman, W.P. 1996. Assessment of a new device for injecting bovine collagen-The ADG needle, Dermatol. Surg. 22(2), 175–176.

    Google Scholar 

  • Coury, A.J. 1996. Chemical and biochemical degradation of polymers, in: Biomaterials Science: An Introduction to Materials in Medicine (B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, eds.), pp. 243–260, Academic Press, San Diego.

    Google Scholar 

  • Coury, A.J., Cahalan, P.T., Schultz, E.L., Stokes, K.B. 1984. In vitro aging of implantable polyurethanes in metal ion solutions, Trans. Soc. Biomater. 7, 252.

    Google Scholar 

  • Crommen, J., Vandorpe, J., Schacht, E. 1993. Degradable polyphosphazenes for biomedical applications, J. Controlled Release 24, 167–180.

    Article  Google Scholar 

  • Dahiyat, B.I., Hostin, E., Posadas, E.M., Leong, K.W. 1993. Synthesis and characterization of putrescine-based poly(phosphoester-urethanes), J. Biomater. Sci. Polym. Ed. 4(5), 529–536.

    Google Scholar 

  • Daniels, A.U., Chang, M.K.O., Andriano, K.P., Heller, J. 1990. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone, J. Appl. Biomater. 1, 57–78.

    Google Scholar 

  • David, F.R. 1986. Liquid loaded pad for medical applications, US Patent, 4 588 400.

    Google Scholar 

  • Davies, M.C., Khan, M.A., Lynn, R.A., Heller, J., Watts, J.F. 1991. X-ray photoelectron spectroscopy analysis of the surface chemical structure of some biodegradable poly(orthoesters), Biomaterials 12(3), 305–308.

    Article  Google Scholar 

  • Davis, S.S., Illum, L., McVie, J.G., Tomlinson, E. 1984. Microspheres and Drug Therapy: Pharmaceutical, Immunological and Medical Aspects, pp. 50–55, Elsevier, Amsterdam.

    Google Scholar 

  • De Jaeger, R., Gleria, M. 1998. Poly(organophosphazene)s and related compounds: synthesis, properties and applications, Progr. Poym. Sci. 23, 179–276.

    Google Scholar 

  • Demura, M., Asakura, T., Kuroo, T. 1989. Immobilization of biocatalyst with bomboxy mori silk fibroin by several kinds of physical treatment and its application to glucose sensors, Biosensors 4, 361–372.

    Article  Google Scholar 

  • Doddi, N., Versfelt, C.C., Wasserman, D. 1977. Synthetic absorbable surgical devices of poly-dioxanone, US Patent, 4052 988.

    Google Scholar 

  • Doi, Y. 1990. Microbial Polyesters, Carl Hanser Verlag, New York.

    Google Scholar 

  • Domb, A.J., Amselem, S., Langer, R., Maniar, M. 1994. Polyanhydrides as carriers of drugs, in: Biomedical Polymers. Designed-to-Degrade Systems (S.W. Shalaby, ed.), pp. 69–96, Hanser Publ., Munich.

    Google Scholar 

  • Domb, A.J., Kost, J., Wiseman, D.M. 1997. Handbook for Biodegradable Polymers, Harwood Academic Publ., Singapore.

    Google Scholar 

  • Dongmei, Z., Hanfa, Z., Jianyi, N., Li, Y., Lingyun, J., Yukui, Z. 1998. Chin. J. Biotechnol. 14(4), 233–240.

    Google Scholar 

  • Edwards-Levy, F., Levy, M.C. 1999. Serum albumin-alginate coated beads: mechanical properties and stability, Biomaterials 20(21), 2069–2084.

    Google Scholar 

  • Engelberg, I., Kohn, J. 1991. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study, Biomaterials 12, 292–304.

    Article  Google Scholar 

  • Engler, R.J., Weber, C.B., Turnicky, R. 1986. Hypersensitivity to chromated catgut sutures: a case report and review of the literature, Ann. Allergy 56(4), 317–320.

    Google Scholar 

  • Fambri, L., Guerriero, A., Grimaldi, M., Migliaresi C. 1995. Effect of polymer purity on the in vitro degradation of compression moulded poly-DL-lactic acid materials 12th European Conference on Biomaterials, p. 38, Porto 10–13 September.

    Google Scholar 

  • Fambri, L., Pegoretti, A., Fenner, R., Incardona, S.D., Migliaresi, C. 1997. Biodegradable fibres of poly(L-lactic acid) produced by melt spinning, Polymer 38(1), 79–85.

    Article  Google Scholar 

  • Fambri, L., Pelz, M., Liedkte, H., Migliaresi, C. 2000. Production and characterisation of osteoinductive polylactide composites, Proceedings of 6th World Biomaterials Conference, p. 506, May 15–20, Kamuela, Hawaii.

    Google Scholar 

  • Feijen, J. 1986. Biodegradable polymers for medical purpose, in: Polymeric Biomaterials (E. Piskin, A.S. Hoffman, eds.), pp. 62–77, Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Ferguson, S., Wahl, D., Gogolewski, S. 1996. Enhancement of the mechanical properties of polylactides by solid-state extrusion. II. Poly(L-lactide), poly(L/D-lactide), and poly(L/DL-lactide, J. Biomed. Mater. Res. 30(4), 543–551.

    Article  Google Scholar 

  • Franssen, O., Stenekes, R.J., Hennink, W.E. 1999a. Controlled release of a model protein from enzymatically degrading dextran microspheres, J. Controlled Release 59(2), 219–228.

    Article  Google Scholar 

  • Franssen, O., Vandervennet, L., Roders, P., Hennink, W.E. 1999b. Degradable dextran hydrogels: controlled release of a model protein from cylinders and microspheres, J. Controlled Release 60(2–3), 211–221.

    Google Scholar 

  • Frazza, E.J., Schmitt, E.E. 1971. A new absorbable suture, J. Biomed. Mater. Res. Symp. 1, 43–58.

    Google Scholar 

  • Friess, W. 1998. Collagen-biomaterial for drug delivery, Eur. J. Pharm. Biopharm. 45(2), 113–136.

    Google Scholar 

  • Friess, W., Uludag, H., Foskett, S., Biron, R., Sargeant, C. 1999. Characterization of absorbable collagen sponges as rhBMP-2 carriers, Int. J. Pharm. 187(1), 91–99.

    Article  Google Scholar 

  • Fukuzaki, H., Yoshida, M., Asano, M., Kumakura, M. 1989. Synthesis of copoly(D,L-lactic acid) with relatively low molecular weight and in vitro degradation, Eur. Polym. J. 25, 1019–1026.

    Google Scholar 

  • Gaillard, M.L., van Blitterswijk, C.A. 1994. Pre-operative addition of calcium ions or calcium phosphate to PEO/PBT copolymers (Polyactive™)stimulates bone mineralization in vitro, J. Mater. Sci., Mater. Med. 5, 695–701.

    Google Scholar 

  • Gangrade, N., Price, J.C. 1991. Poly(hydroxybutyrate-hydroxyvalerate) microspheres containing progesterone: preparation, morphology and release properties, J. Microencapsul. 8(2), 185–202.

    Google Scholar 

  • Gennadios, A., McHugh, T.H., Weller, C.L., Kroctha, J.M. 1994. Edible coatings and films based on proteins, in: Edible Coating and Films to Improve Food Quality (J.M. Kroctha, E.A. Baldwin, M.O. Nisperos-Carriedo, eds.), pp. 201–277, Technomic Publ. Co., Lancaster, PA.

    Google Scholar 

  • Gilding, D.K. 1981. Biodegradable polymers, in: Biocompatibility of Clinical Implant Materials, Vol. 2 (D.F. Williams, ed.), pp. 209–232, CRC Press, Boca Raton.

    Google Scholar 

  • Gilding, O.K., Reed, A.M. 1979. Biodegradable polymers for use in surgery-polyglycolic/ polylactic acid homo-and copolymers: 1, Polymer 20, 1459–1464.

    Google Scholar 

  • Gogly, B., Dridi, M., Hornebeck W., Bonnefoix, M., Godeau, G., Pellat, B., 1999. Effect of heparin on the production of matrix metalloproteinases and tissue inhibitors of metalloproteinases by human dermal fibroblasts, Cell. Biol. Int. 23(3), 203–209.

    Article  Google Scholar 

  • Goissis, G., Marcantonio, E. Jr., Marcantonio, R.A., Lia, R.C., Cancian, D.C., de Carvalho, W.M. 1999. Biocompatibility studies of anionic collagen membranes with different degree of glutaraldehyde cross-linking, Biomaterials 20(1), 27–34.

    Article  Google Scholar 

  • Goodman, I. 1988. Polyesters, in: Encyclopedia of Polymers Science and Engineering, 2nd edn. (H.F. Mark, N.M. Bikales, C.G. Overberger, G. Menges, eds.), Vol. 12, pp. 1–75, John Wiley & Sons, New York.

    Google Scholar 

  • Gopferich A. 1999. Biodegradable polymers: Polyanhydrides, in: Encyclopedia of Controlled Drug Delivery (E. Mathiowitz, ed.), Vol. 1, pp. 60–71, John Wiley & Sons, New York.

    Google Scholar 

  • Gorham, S.D. 1991. Collagen, in: Biomaterials, Novel Materials from Biological Sources (D. Byron, ed.), Ch. 2, Stockton Press, New York.

    Google Scholar 

  • Goupil, D. 1996. Sutures, in: Biomaterials Science: An Introduction to Materials in Medicine (B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, eds.), pp. 356–360, Academic Press, San Diego.

    Google Scholar 

  • Goupta, M.C., Deshmukh, V.G. 1983. Radiation effects on poly(lactic acid), Polymer, 24, 827–830.

    Google Scholar 

  • Grasset, L., Cordier, D., Ville A. 1977. Woven silk as a carrier for the immobilization of enzymes, Biotechnol. Bioeng. 19(4), 611–618.

    Article  Google Scholar 

  • Greenwald, D., Shumway, S., Albear, P., Gottlieb, L. 1994. Mechanical comparison of 10 suture materials before and after in vivo incubation, J. Surg.Res. 56(4), 372–377.

    Article  Google Scholar 

  • Grijpma, D.W., Pennings, A.J. 1994. Copolymers of L-lactide. 2. Mechanical properties, Macromol. Chem. Phys. 195, 1649–1663.

    Google Scholar 

  • Grote, J.J., Bakker, D., Hesseling, S.C., van Blitterswijk, C.A. 1991. New alloplastic tympanic membrane material, Am. J. Otol. 12(5), 329–335.

    Google Scholar 

  • Guidoin, R., Couture, J. 1991. Polyesther prostheses: the outlook for the future, in: Blood Compatible Materials and Devices. Perspectives Towards the 21st Century (C.P. Sharma, M. Szycher, eds.), Ch. 13, pp. 221–236, Technomic Publ. Co., Lancaster, PA.

    Google Scholar 

  • Guillaume, Y.C., Peyrin, E., Berthelot, A. 1999. Chromatographic study of magnesium and calcium binding to immobilized human serum albumin, J. Chromatogr. B: Biomed. Sci. Appl. 728(2), 167–174.

    Article  Google Scholar 

  • Gumargalieva, K.Z., Moiseev, Y.V., Daurova, T.T., Voronkova, O.S. 1982. Effect of infections on the degradation of polyethylene terephthalate implants, Biomaterials 3(3), 177–180.

    Article  Google Scholar 

  • Hagenmaier, R.D., Shaw, P.E. 1990. Moisture permeability of edible films made with fatty acid and hydroxypropyl methylcellulose, J. Agric. Food Chem. 38, 1799–1803.

    Article  Google Scholar 

  • Hara, S., Yamakawa, M. 1995. Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori, J. Biol. Chem. 270(50), 29923–29927.

    Google Scholar 

  • Hasirci, V. 2000. Biodegradable biomedical polymers. Review of degradation of and in vivo responses to polylactides and polyhydroxyalkanoates, in: Biomaterials and Bioengineering Handbook (D.L. Wise, ed.), Ch. 4, pp. 141–155, Marcel Dekker, New York.

    Google Scholar 

  • Hastings, G.W. 1992. Cardiovascular Biomaterials, pp. 10–25, Springer-Verlag, London.

    Google Scholar 

  • Hawrylewicz, E.J., Zapata, J.J., Blair, W.H. 1995. Soy and experimental cancer: animal studies, J. Nutr. 125(3 Suppl), 698S–708S.

    Google Scholar 

  • Hegyeli, A. 1973. Use of organ cultures to evaluate biodegradation of polymer implant materials, J. Biomed. Mater. Res. 7, 205–214.

    Article  Google Scholar 

  • Heller, J. 1983. Use of polymers in controlled drug release, in: Biocompatible Polymers, Metals, and Composites (M. Szycher, ed.), Ch. 24, pp. 551–584, Technomic Publ. Co., Lancaster, PA.

    Google Scholar 

  • Heller, J. 1990. Development of poly(orthoesters), a historical overview, Biomaterials 11 (November), 659–665.

    Google Scholar 

  • Heller, J. 1996. Drug delivery systems, in: Biomaterials Science: An Introduction to Materials in Medicine (B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, eds.), pp. 346–356, Academic Press, San Diego.

    Google Scholar 

  • Heller, J., Daniels, A.U. 1994. Poly (ortho esters), in Biomedical Polymers. Designed-to-Degrade Systems (S.W. Shalaby, ed.), pp. 35–67, Hanser Publ., Munich.

    Google Scholar 

  • Heller, J., Gurny, R. 1999. Polyorthoesters, in: Encyclopedia of Controlled Drug Delivery (E. Mathiowitz, ed.), Vol. 2, pp. 852–874, John Wiley & Sons, New York.

    Google Scholar 

  • Heller, J., Sparer, R.V., Zentner, G.M. 1990a. Poly(ortho esters), in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin, R. Langer, eds.), Ch. 4, pp. 121–161, Marcel Dekker, New York.

    Google Scholar 

  • Heller, J., Ng, S.Y., Fritzinger, B.K., Roskov, K.V. 1990b. Controlled drug release from bioerodible hydrophobic ointments, Biomaterials 11 (May), 235–237.

    Google Scholar 

  • Heller, J., Pangburn, S.H., Roskov, K.V. 1990c. Development of enzymatically degradable protective coatings use in triggered drug delivery systems. II. Derivatized starch hydrogels, Biomaterials 11 (July), 345–350.

    Google Scholar 

  • Heller, J., Ng, S.Y., Fritzinger, B.K. 1992. Synthesis and characterization of a new family of poly(orthoester)s, Macromolecules 25, 3362–3364.

    Article  Google Scholar 

  • Heslot, H. 1998. Artificial fibrous proteins: a review, Biochimie 80(1), 19–31.

    Article  Google Scholar 

  • Hoekstra, D. 1999. Hyaluronan-modified surfaces for medical devices, Med. Dev. Diagn. Ind. Mag. Feb, 48–52.

    Google Scholar 

  • Hoenich, N.A., Stamp, S. 2000. Clinical investigation of the role of membrane structure on blood contact and solute transport characteristics of a cellulose membrane, Biomaterials 21(3), 317–324.

    Article  Google Scholar 

  • Hollinger, J.O. (ed.). 1995. Biomedical Applications of Synthetic Biodegradable Polymers, CRC Press, Boca Raton.

    Google Scholar 

  • Horncastle, J. 1995. Wound dressings. Past, present, and future, Med. Device Technol. 6(1), 30–36.

    Google Scholar 

  • Huang, S.J., Leong, K.W. 1989. Biodegradable polymers. Polymers derived from gelatin and lysin esters, Polym. Prepr. 20, 552–554.

    Google Scholar 

  • Hudson, S.M. 1994. Review of chitin and chitosan as fiber and film formers, J. Mater. Sci., Mater. Med. C34(3), 375–437.

    Google Scholar 

  • Huijun, L., Ramsden, L., Corke, H. 1998. Physical properties and enzymatic digestibility of acetylated and normal maize starch, Carbohydr. Polym. 34(4), 283–289.

    Google Scholar 

  • Hyon, S.-H., Jamshidi, K., Ikada, Y. 1984. Melt spinning of poly-L-lactide and hydrolysis of the fiber in vitro, in: Polymers as Biomaterials (S. Shalaby, A.S. Hoffmann, B.D. Ratner, T.A. Horbett, eds.), pp. 51–65, Plenum Press, New York.

    Google Scholar 

  • Ibim, S.E.M., Ambrosio, A.M.A., Kwon, M.S., El-Amin, S.F., Allcock, H.R., Laurencin, C.T. 1997. Novel polyphosphazene/poly(lactide-co-glycolide) blends: miscibility and degradation studies, Biomaterials 18, 1565–1569.

    Google Scholar 

  • Inouhe, K., Kurokawa, M., Nishikawa, S., Tsukada, M. 1998. Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells, J. Biochem. Biophys. Methods 37(3), 159–164.

    Google Scholar 

  • Ishihara, C., Hiratai, R., Tsuji, M., Yagi, K., Nose, M., Azuma, I. 1998. Mannan decelerates the clearence of human red blood cells in SCID mouse, Immunopharmacol. 38(3), 223–228.

    Google Scholar 

  • Jaffe, R., Wade, C.W.R., Hegyeli, A.F., Rice, R., Hodge, J. 1986. Synthesis and bioevaluation of alkyl 2-cyanoacryloyl glycolates as potential soft tissue adhesives, J. Biomed. Mater. Res. 20, 205–212.

    Google Scholar 

  • Johns, D.B., Lenz, R.W., Leucke, A. 1984. Lactones, in: Ring-opening Polymerization, Vol. 1 (K.J. Ivin, T. Saegusa, eds.), pp. 461–521, Elsevier Applied Science Publishers Ltd., 1984.

    Google Scholar 

  • Kalimo, K., Vainio, E. 1980. Wheat grain immunofluorescent antibodies as an indication of gluten sensitivity?, Br. J. Dermatol. 103(6), 657–661.

    Google Scholar 

  • Kane, J.B., Tompkins, R.G., Yarmush, M.L., Burke, J.F. 1996. Burn dressing, in: Biomaterials Science: An Introduction to Materials in Medicine (B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, eds.), pp. 360–370, Academic Press, San Diego.

    Google Scholar 

  • Kaplan, D.L., Wiley, B.J., Mayer, J.M., Arcidiacono, S., Keith, J., Lombardi, S.J., Ball, D., Allen, A.L. 1994. Bioabsorbable poly(ester-amides), in: Biomedical Polymers. Designed-to-Degrade Systems (S.W. Shalaby ed.), pp. 189–212, Hanser Publ., Munich.

    Google Scholar 

  • Karjalainen, T., Hiljanen, M., Malin, M., Seppala, J. 1996. Biodegradable lactone copolymers. III. Mechanical properties of ε-caprolactone and lactide copolymers after hydrolysis in vitro, J. Appl. Polym. Sci. 59, 1299–1304.

    Article  Google Scholar 

  • Kassab, A.C., Xu, K., Denkbas, E.B., Dou, Y., Zhao, S., Piskin, E. 1997. Rifampicin carrying polyhydroxybutyrate microspheres as a potential chemoembolization agent, J. Biomater. Sci., Polym. Ed. 8(12), 947–961.

    Google Scholar 

  • Katayama, S., Murakami, T., Takahashi, Y., Serita, H., Obuchi, Y., Ito, T. 1976. Synthesis of alternating polyamide esters by melt and solution polycondensation of N,N′-di(6-hydroxycaproyl) diamines and N-6-hydroxycaproyl aminoalcohol with terephthalic and adipic dimethyl esters and dichlorides, J. Appl. Polym. Sci. 20, 975–994.

    Article  Google Scholar 

  • Kemmish, D. 1993. The processing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-PBHV, in: Biodegradable Polymers and Packaging (C. Ching, D. Kaplan, E. Thomas, eds.), pp. 225–232, Technomic Publ. Co., Lancaster, PA.

    Google Scholar 

  • Kemnitzer, J.E., Gross, R.A., McCarthy, S.P. 1992. Stereochemical and morphoplogical effects on the degradation kinetics of poly(-hydroxybutyrate): a model study, Proc. ACS Div., Polym. Mater. Sci. Eng. 66, 405–407.

    Google Scholar 

  • Kester, J.J., Fennema, O. 1986. Edible films and coatings: a review, J. Food Sci. 40, 47–59.

    Google Scholar 

  • Kimura, Y. 1993. Biodegradable polymers, in: Biomedical Application of Polymeric Materials (T. Tsuruta, T. Hayashi, K. Kataoka, K. Ishihara, Y. Kimura, eds.), pp. 164–190, CRC Press, Boca Raton.

    Google Scholar 

  • King, M.W., Guidoin, R., Blais, P., Garton, A., Gunasekera, R. 1985. Degradation of polyester arterial prostheses: a physical or chemical mechanism?, in: Corrosion and Degradation of Implant Materials: Second Symposium (A.C. Fraker, C.D. Griffin, eds.), Vol. 859, pp. 294–307, ASTM STP.

    Google Scholar 

  • Klebanoff, S. 1982. Iodination catalyzed by xanthine oxidase system: Role of hydroxyl radicals, Biochemistry 21, 4110–4116.

    Article  Google Scholar 

  • Kocisova, E., Jancura, D., Sanchez-Cortes, S., Miskovsky, P., Chinsky, L., Garcia-Ramos, J.V. 1999. Interaction of antiviral and antitumor photoactive drug hypocrellin A with human serum albumin, J. Biomol. Struct. Dyn. 17(1), 111–120.

    Google Scholar 

  • Kohn, J. 1990. Pseudo poly(amino acids), in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin, R. Langer, eds.), Ch. 6, pp. 195–229, Marcel Dekker, New York.

    Google Scholar 

  • Kohn, J., Langer, R. 1986. Poly(iminocarbonates) as potential biomaterials, Biomaterials 7(3) May, 176–183.

    Article  Google Scholar 

  • Kopecek, J., Ulbrich, K. 1983. Biodegradation of biomedical polymers, Prog. Polym. Sci., 9, 1–58.

    Article  Google Scholar 

  • Kostopoulos, L., Karring, T. 1994. Guided bone regeneration in mandibular defects in rats using a bioresorbable polymer, Clin. Oral Implants Res. 5(2), 66–74.

    Google Scholar 

  • Kramer, P.A. 1974. Albumin microspheres as vehicles for achieving specificity in drug delivery, J. Pharm. Sci. 63, 1646–1647.

    Google Scholar 

  • Krogel, L, Bodmeier, R. 1999. Development of a multifunctional matrix drug delivery system surrounded by an impermeable cylinder, J. Controlled Release 61(1–2), 43–50.

    Google Scholar 

  • Kronenthal, R.L. 1975. Biodegradable polymers in medicine and surgery, in: Polymers in Medicine and Surgery (R.L. Kronental, Z. Oser, E. Martin, eds.), pp. 119–137, Plenum Press, New York.

    Google Scholar 

  • Kuen, Y.L., Wan, S.H., Won, H.P. 1995. Blood compatibility and biodegradability of partially N-acylated chitosan derivatives, Biomaterials 16(16), 1211–1216.

    Google Scholar 

  • Kulkarni R.K., Pani K.C., Neuman C., Leonard F. 1966. Polylactic acid for surgical implants, Arch. Surg. 93, 839–843.

    Google Scholar 

  • Kulkarni, R.K., Moore, E.G., Hegyeli, A.F., Leonard, F. 1971. Biodegradable poly(lactic acid) polymers, J. Biomed. Mater. Res. 5, 169–181.

    Article  Google Scholar 

  • Kumada, T., Nakano, S., Sone, Y., Kiriyama, S., Hisanaga, Y., Rikitoku, T., Tamoto, A., Honda, T. 1999. Clinical effectiveness of degradable starch microspheres in patients with liver cancer, Gan To Kagaku Ryoho 26(12), 1678–1683.

    Google Scholar 

  • Kurita, K. 1998. Chemistry and application of chitin and chitosan, Polym. Degrad. Stabil. 59(1–3), 117–120.

    Google Scholar 

  • Kurosaki, S., Otsuka, H., Kunitomo, M., Koyama, M., Pawankar, R., Matumoto K. 1999. Fibroin allergy. IgE mediated hypersensitivity to silk suture materials, Nippon Ika Daigaku Zasshi 66(1), 41–44.

    Article  Google Scholar 

  • Lanza, R.P., Langer, R., Chick, W.L. 1997. Principles of Tissue Engineering, Academic Press, San Diego.

    Google Scholar 

  • Laurencin, C.T., Koh, H.J., Neenan, T.X., Allcock, H.R., Langer, R. 1987. Controlled release using a new bioerodible polyphosphazene matrix system, J. Biomed. Mater. Res. 21, 1231–1246.

    Article  Google Scholar 

  • Laurent, T.C. 1970. Structure of hyaluronic acid, in: Chemistry and Molecular Biology of the Intercellular Matrix (E.A. Balazs, ed.), pp. 703–732, Academic Press, London.

    Google Scholar 

  • Lawton, J.W. 1996. Effect of starch type on the properties of starch containing films, Carbohydr. Polym. 29(3), 203–208.

    Article  Google Scholar 

  • Leadley, S.R., Shakesheff, K.M., Davies, M.C., Heller, J., Franson, N.M., Paul, A.J., Brown, A.M., Watts, J.F. 1998. The use of SIMS, XPS and in situ AFM to probe the acid catalysed hydrolysis of poly(orthoesters), Biomaterials Aug 19(15), 1353–1360.

    Google Scholar 

  • Lee, T.K., Sokoloski, T.D., Royer, G.P. 1981. Serum albumin beads: an injectable, biodegradable system for the sustained release of drugs, Science 213, 230–235.

    Google Scholar 

  • Leenslag, J.W., Kroes, M.T., Pennings, A.J., Van der Lei, B. 1988. A compliant, biodegradable vascular graft: Basic aspects of its construction and biological performance, New Polym. Mater. 1(2), 111–126.

    Google Scholar 

  • Lehninger, A.L. 1977. Biochemistry, 3rd edn., Worth Publishers Inc., New York.

    Google Scholar 

  • Lelah, M.D., Cooper, S.L. 1986. Polyurethanes in Medicine, CRC Press, Boca Raton.

    Google Scholar 

  • Lemm, W. 1984. Biodegradation of polyurethanes, in: Polyurethanes in Biomedical Engineering (H. Planck, G. Egbers, I. Sirè, eds.), pp. 103–108, Elsevier, Amsterdam.

    Google Scholar 

  • Lemm, W., Bucherl, E.S. 1983. The degradation of some polyurethanes in vitro and in vivo, in: Biomaterial and Biomechanics (P. Ducheyne, G. Van der Perr, A.E. Aubert, eds.), pp. 319–324, Elsevier, Amsterdam.

    Google Scholar 

  • Lenaerts, V., Couvreur, P., Christiansen-Leyh, D., Joiris, E., Roland, M., Rollman, B., Speiser, P. 1984. Degradation of poly(isobutyl cyanoacrylate) nanoparticles, Biomaterials 5, 65–68.

    Article  Google Scholar 

  • Leong, K.W., Brott, B.C., Langer, R. 1985. Bioerodible polyanhydrides as drug carrier matrices I: characterization, degradation and release characteristics, J. Biomed. Mater. Res. 19, 941–955.

    Article  Google Scholar 

  • Leung, K.S., Hung, L.K., Leung, P.C. 1994. Biodegradable Implants in Fracture Fixation, World Scientific Publ. Co., Singapore.

    Google Scholar 

  • Lewis, D.H. 1990. Controlled release of bioactive agents from lactide/glycolide polymers, in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin, R. Langer, eds.), pp. 1–41, Marcel Dekker, New York.

    Google Scholar 

  • Li, S., Vert, M. 1999. Biodegradable polymers: Polyesters, in: Encyclopedia of Controlled Drug Delivery (E. Mathiowitz, ed.), Vol. 1, pp. 71–93, John Wiley & Sons, New York.

    Google Scholar 

  • Liu, Y., Chen, X., Qian, J., Liu, H., Shao, Z., Deng, J., Yu, T. 1997. Immobilization of glucose oxidase with the blend of regenerated silk fibroin and poly(vinyl alcohol) and its application to a 1,1’-dimethylferrocene-mediating glucose sensor, Appl. Biochem. Biotechnol. 62(2–3), 105–117.

    Google Scholar 

  • Ljungberg, C., Johansson-Ruden, G., Bostrom, K.J., Novikov, L., Wiberg, M. 1999. Neuronal survival using a resorbable synthetic conduit as an alternative to primary nerve repair, Microsurgery 19(6), 259–264.

    Article  Google Scholar 

  • Lou, X., Chirila, T.V. 1999. Swelling behavior and mechanical properties of chemically cross-linked gelatin gels for biomedical use, J. Biomater. Appl. 14(2), 184–191.

    Google Scholar 

  • Maarek, J.M., Guidoin, R., Aubin, M., Prud’homme, R.E. 1984. Molecular weight characterization of virgin and explained polyester arterial prostheses, J. Biomed. Mater. Res. 18, 881–894.

    Article  Google Scholar 

  • MacGreger, E.A., Greenwood, C.T. 1980. Polymers in Nature, Chs. 3 and 6, John Wiley & Sons, New York.

    Google Scholar 

  • Maeda, M., Inoue, Y., Kaneko, K., Sugamori, T., Iwase, H., Tsurutani, R. 2000. Chitin and its derivatives, in: Biomaterials and Bioengineering Handbook (D.L. Wise, ed.), Ch. 39, pp. 867–880, Marcel Dekker, New York.

    Google Scholar 

  • Magnus, G., Dunleavy, R.A., Critchfield, F.E. 1966. Stability of urethane elastomers in water, dry air and moist air environments, Rubber. Chem. Technol. 39, 1328.

    Google Scholar 

  • Mao, H.Q., Kadiyala, I., Leong, K.W., Zhao, Z., Dang, W. 1999. Biodegradable polymers: Poly(phosphoester)s, in: Encyclopedia of Controlled Drug Delivery (E. Mathiowitz, ed.), Vol. 1, pp. 45–60, John Wiley & Sons, New York.

    Google Scholar 

  • Marck, K.W., Wildevuur C.H., Sederel W.L., Bantjes, A., Fejen, J. 1977. Biodegradability and tissue reaction of random copolymers of L-leucine, L-aspartic acid and L-aspartic acid esters, J. Biomed. Mater. Res. 11, 405–422.

    Article  Google Scholar 

  • Masar, B., Cefelin, P., Lipatova, T.E., Bakalo, L.A., Lugovskaya, G.G. 1979. Synthesis of polyurethanes and investigation of their hydrolytic stability, J. Polym, Sci., Polym. Symp. 66, 259–268.

    Google Scholar 

  • Matsusue, Y., Yamamuro, T., Oka, M., Shikinami, Y., Hyon, S.-H., Ikada, Y. 1992. In vitro and in vivo studies on bioabsorbable ultra-high-strength poly(L-lactide) rods, J. Biomed. Mater. Res. 26, 1553–1567.

    Article  Google Scholar 

  • Meckel, W., Goyert, W., Wieder, W. 1996. Thermoplastic polyurethane elastomers, in: Thermoplastic Elastomers, 2nd edn. (G. Holden, N.R. Legge, R. Quirk, H.E. Schroeder, eds.), Ch. 2, pp. 16–45, Hanser Publishers, Munich.

    Google Scholar 

  • Meijer, G.J., van Dooren, A., Gaillard, M.L., Dalmeijer, R., de Putter, C., Koole, R., van Blitterswijk, C.A. 1996. Polyactive as a bone-filler in a beagle dog model, Int. J. Oral Maxillofac. Surg. 25(3), 210–216.

    Google Scholar 

  • Meijs, G.F., McCarthy, S.J., Rizzardo, E., Chen, Y.C., Chatalier, R., Brandwood, A., Schindhelm, K. 1993. Degradation of medical grade polyurethane elastomers: the effect of hydrogen peroxide in vitro, J. Biomed. Mater. Res. 27, 345–356.

    Article  Google Scholar 

  • Migliaresi, C., Cohn, D., De Lollis, A., Fambri, L. 1991a. Dynamic mechanical and calorimetric analysis of compression molded PLLA of different molecular weights: effect of the thermal treatments, J. Appl. Polym. Sci. 43(1), 83–95.

    Article  Google Scholar 

  • Migliaresi, C., De Lollis, A., Fambri, L., Cohn, D. 1991b. The effect of the thermal treament on the crystallinity of different molecular weight PLLA biodegradable polymers, Clin. Mater. 8, 111–118.

    Google Scholar 

  • Migliaresi, C., Fambri, L., Cohn, D. 1994. A study on the in vitro degradation of poly(lactic acid), J. Biomater. Sci. Polym. Ed. 5(6), 591–606.

    Google Scholar 

  • Miller, A.G. 1964. Degradation of synthetic polypeptides. III. Degradation of poly-α-lysin by proteolytic enzymes in 0.20 M sodium chloride, J. Am. Chem. Soc. 86, 3818–3822.

    Google Scholar 

  • Minoura, N., Tsukada, M., Nagura, M. 1990. Physico-chemical properties of silk fibroin membrane as a biomaterial, Biomaterials 11, 430–434.

    Article  Google Scholar 

  • Mirkovitch, V., Akutsu, T., Kolff, W.J. 1962. Polyurethane aortas in dogs. Three year results, Trans. Am. Soc. Artif. Intern. Organs 8, 79.

    Google Scholar 

  • Mitchell, J., Irons, L., Palmer, G.J. 1970. A study of the spread and adsorbed films of milk proteins, Biochim. Biophys. Acta 200(1), 138–150.

    Google Scholar 

  • Mormann, W., Wagner, J. 1988. Solvolytic degradation of aliphatic polyesteroligomers: poly(tetramethylene adipate) diol, Angew. Makromol. Chem. 160, 1–15.

    Google Scholar 

  • Murphy, K.S., Enders, N.A., Mahjour, M., Fawzi, M.B. 1986. A comparative evaluation of aqueous enteric polymers in capsule coating, Pharm. Technol. October, 36–45.

    Google Scholar 

  • Muzzarelli, R.A. 1993. Biochemical significance of exogenous chitins and chitosans in animals and patients, Carbohydr. Polym. 20, 7–15.

    Google Scholar 

  • Muzzarelli, R.A., Jeuniaux, C., Gooday, G.W. 1986. Evaluation of chitosan as a new hemostatic agent: in vitro and in vivo experiments, in: Chitin in Nature and Technology (G. Fradet, S. Brister, D. Mulder, J. Lough, B.L. Averbach, eds.), pp. 78–85, Plenum Press, New York.

    Google Scholar 

  • Nakamura, T., Shimizu, Y., Matsui, T., Okumura, N., Hyon, S.H., Nishiya, K. 1992. A novel bioabsorbable monofilament surgical suture made from (ε-caprolactone, L-lactide) copolymer, in: Degradation Phenomena on Polymeric Biomaterials (H. Planck, M. Dauner, M. Renardy, eds.), pp. 153–162, Springer-Verlag, Berlin-Heidelberg.

    Google Scholar 

  • Narayan, R. 1990. Introduction, in: Degradable Materials. Perspectives, Issues and Opportunities (S.A. Barenberg, J.L. Brash, R. Narayan, A.E. Redpath, eds.), pp. 1–37, CRC Press, Boca Raton.

    Google Scholar 

  • Nimni, M.E. 1983. Collagen: structure, function and metabolism in normal and fibrotic tissues, Semin. Arthritis Rheum. XIII(1), 1–86.

    Google Scholar 

  • Nisperos-Carriedo, M.O. 1994. Edible coatings and films based on polysaccharides, in: Edible Coatings and Films to Improve Food Quality (J.M. Krochta, E.A. Baldwin, M.O. Nisperos-Carriedo, eds.), pp. 305–336, Technomic Publ. Co., Lancaster, PA.

    Google Scholar 

  • Nose, Y. 1990. Artificial kidney, is it really not necessary?, Artif. Organs 14, 245–251.

    Google Scholar 

  • Okada, T., Hayashi, T., Ikada, Y. 1992. Degradation of collagen suture in vitro and in vivo, Biomaterials 13(7), 448–454.

    Article  Google Scholar 

  • Ossefort, Z.T., Testroet, F.B. 1966. Hydrolytic stability of urethane elastomers, Rubber. Chem. Technol. 39(6), 1308–1327.

    Google Scholar 

  • Ottenbrite, R.M., Huang, S.J., Park, K. 1996. Hydrogels and Biodegradable Polymers for Bioapplications, ACS Symp. Ser. 627, Am. Chem. Soc., Washington DC.

    Google Scholar 

  • Pachence, J.M., Berg, R.A., Silver, F.H. 1987. Collagen: Its place in the medical device industry, Med. Device Diagn. Ind. 9, 49–55.

    Google Scholar 

  • Padgett, T., Han, I.Y., Dawson, P.L. 1998. Incorporation of food-grade antimicrobial compounds into biodegradable packaging films, J. Food Prot. 61(10), 1330–1335.

    Google Scholar 

  • Pandit, A., Ashar, R., Feldman, D. 1999. The effect of TGF-beta delivered through a collagen scaffold on wound healing, J. Invest. Surg. 12(2), 89–100.

    Google Scholar 

  • Parikh, M., Gross, R.A., McCarthy, S.P. 1992. The effect of crystalline morphology on enzymatic degradation kinetics, Proc. ACS Div., Polym. Mat. Sci. Eng. 66, 408–409.

    Google Scholar 

  • Park, K., Shalaby, W.S.W., Park, H. 1993. Biodegradable Hydrogels for Drug Delivery, Technomic Publ. Co., Lancaster, PA.

    Google Scholar 

  • Patrick, C.W., Mikos, A.G., McIntire, L.V. 1998. Frontiers in Tissue Engineering, Pergamon Press, New York.

    Google Scholar 

  • Payne, L.G., Jenkins, S.A., Andrianov, A., Roberts, B.E. 1995a, Water-soluble phosphazene polymers for parenteral and mucosal vaccine delivery, in: Vaccine Design: The Submit and Adjuvant Approach (M.F. Powell, M.J. Newman, eds.), Ch. 20, pp. 473–493, Plenum Press, New York.

    Google Scholar 

  • Payne, L.G., Jenkins, S.A., Andrianov, A., Langer, R., Roberts, B.E. 1995b. Xenobiotic polymers as vaccine vehicles, Adv. Exp. Med. Biol. 371B, 1475–1480.

    Google Scholar 

  • Pegoretti, A., Fambri, L., Migliaresi, C. 1997. In vitro degradation of poly(L-lactic acid) fibers produced by melt spinning, J. Appl. Polym. Sci. 64, 213–223.

    Article  Google Scholar 

  • Peppas, N.A. 1987. Hydrogels in medicine and pharmacy: properties and applications, in: Hydrogels in Medicine and Pharmacy, Vol. III, pp. 189–225, CRC Press Inc., Boca Raton.

    Google Scholar 

  • Pernerstorfer, T., Jilma, B., Eichler, H.G, Aull, S., Handler, S., Speiser, W. 1999. Heparin lowers plasma levels of activated factor VII, Br. J. Haematol. 105(4), 1127–1129.

    Article  Google Scholar 

  • Phua, S.K., Castillo, E., Anderson, J.M., Hiltner, A. 1987. Biodegradation of a polyurethane in vitro, J. Biomed. Mater. Res. 21, 231–246.

    Article  Google Scholar 

  • Piskin, E. 1994. Biodegradable polymers as biomaterials, J. Biomater. Sci. Polym. Ed. 6(9), 795–775.

    Google Scholar 

  • Pitt, C. 1990. Poly-ε-caprolactone and its copolymers, in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin, R. Langer, eds.), pp. 71–120, Marcel Dekker, New York.

    Google Scholar 

  • Pitt, C.G., Jeffcoat, A.R., Zweidinger, R.A., Schindler, A. 1979. Sustained drug-delivery systems. I. The permeability of poly(DL-lactic acid), Poly(-ε-caprolactone), and their copolymers, J. Biomed. Mater. Res. 13, 497–507.

    Article  Google Scholar 

  • Pitt, C.G., Gratzl, M.M., Kimmel, G.L., Surles, J., Schindler, A. 1981. Aliphatic polyesters. II. The degradation of poly(DL-lactic acid), Poly(-ε-caprolactone), and their copolymers in vivo, Biomaterials 2 (October), 215–220.

    Google Scholar 

  • Pulapura, S., Li, C., Kohn, J. 1990. Structure-property relationships for the design of polyiminocarbonates, Biomaterials 11(9) Nov., 666–678.

    Article  Google Scholar 

  • Qian, J., Liu, Y., Liu, H., Yu, T., Deng, J. 1996. An amperometric new methylene blue N-mediating sensor for hydrogen peroxide based on regenerated silk fibroin as an immobilization matrix for peroxidase, Anal. Biochem. 236(2), 208–214.

    Article  Google Scholar 

  • Radder, A.M., Davies, J.E., Leenders, H., van Blitterswijk, C.A. 1994a. Interfacial behavior of PEO/PBT copolymers (Polyactive) in a calvarial system: an in vitro study, J. Biomed. Mater. Res. 28(2), 269–277.

    Google Scholar 

  • Radder, A.M., Leenders, H., van Blitterswijk, C.A. 1994b. Interface reactions to PEO/PBT copolymers (Polyactive) after implantation in cortical bone, J. Biomed. Mater. Res. 28(2), 141–151.

    Google Scholar 

  • Ramshaw, J.A.M., Glattauer, V., Werkmeister, J.A. 2000. Stabilization of collagen in medical devices, in: Biomaterials and Bioengineering Handbook (D.L. Wise, ed.), Ch. 32, pp. 717–738, Marcel Dekker, New York.

    Google Scholar 

  • Rastelli, A., Beccaro, M., Biviano, F., Calderini, G., Pastorello, A. 1990. Hyaluronic acid esters, a new class of semisynthetic biopolymers: chemical and physico-chemical properties, in: Clinical Implant Materials-Advances in Biomaterials, Vol. 9 (G. Heimke, U. Soltesz, A.J.C. Lee, eds.), pp. 199–206, Elsevier, Amsterdam.

    Google Scholar 

  • Ratner, B.D., Gladhill, K.W., Horbett, T.A. 1988. Analysis of in vitro enzymatic and oxidative degradation of polyurethanes, J. Biomed. Mater. Res. 22, 509–527.

    Article  Google Scholar 

  • Ratto, J.A., Stenhouse, P.J., Auerbach, M., Mitchell, J., Farrell, R. 1999. Processing, performance and biodegrability of a thermoplastic aliphatic polyester/starch system, Polymer 40(24), 6777–6788.

    Article  Google Scholar 

  • Ray, J.A., Doddi, N., Regula, D., Williams, J.A., Melveger, A. 1981. Polydioxanone (PDS); a novel monofilament synthetic absorbable suture, Surg. Gynecol. Obstet. 153, 497–507.

    Google Scholar 

  • Regan, E.F., Dunnington, J.H. 1966. Collagen sutures in cataract surgery: clinical and experimental observations, Trans. Am. Ophthalmol. Soc. 64, 39–49.

    Google Scholar 

  • Reineccius, G.A. 1994. Flavour encapsulation, in: Edible Coatings and Films to Improve Food Quality (J.M. Krochta, E.A. Baldwin, M.O. Nisperos-Carriedo, eds.), pp. 105–120, Technomic Publ. Co., Lancaster, PA.

    Google Scholar 

  • Ribeiro, A.J., Neufeld, R.J., Arnaud, P., Chaumeil, J.C. 1999. Microencapsulation of lipophilic drugs in chitosan-coated alginate microspheres, Int. J. Pharm. 187(1), 115–123.

    Article  Google Scholar 

  • Richards, M., Dahiyat, B.I., Arm, D.M., Brown, P.R., Leong, K.W. 1991. Evaluation of polyphosphates and polyphosphonates as degradable biomaterials, J. Biomed. Mater. Res. 25, 1151–1167.

    Article  Google Scholar 

  • Rindlav-Westling, A., Stading, M., Hermansson, A.M., Gatenholm, P. 1998. Structure, barrier and mechanical properties of amylose and amylopectin films, Carbohydr. Polym. 36, 217–224.

    Google Scholar 

  • Rogalla, C.J. 1997. Autologous collagen: a new treatment for dermal defects, Minim. Invasive Surg. Nurs. 11(2), 67–69.

    Google Scholar 

  • Ronis, M.L., Harwick, J.D., Fung, R., Dellavecchia, M. 1984. Review of cyanocrylate tissue glues with emphasis on their otorhinolaryngological applications, Laryngoscope 94, 210–213.

    Google Scholar 

  • Rouxhet, L., Duhoux, F., Borecky, O., Legras, R., Schneider, Y.J. 1998. Adsorption of albumin, collagen, and fibronectin on the surface of poly(hydroxybutyrate-hydroxyvalerate) (PHB/ HV) and of poly(epsilon-caprolactone) (PCL) films modified by an alkaline hydrolysis and of poly(ethylene terephthalate) (PET) track-etched membranes, J. Biomater. Sci., Polym. Ed. 9(12), 1279–1304.

    Google Scholar 

  • Rudakova, T.E., Zaikov, G.E., Voronkova, O.S., Daurova, T.T., Degtyareva, S.M. 1979. The kinetic specificity of polyethylene terephthalate degradation in the living body, J. Polym. Sci., Polym. Symp. 66, 277–281.

    Google Scholar 

  • Sakkers, R.J.B., de Wijn, J.R., van Blitterswijk, C.A. 1992. Relation between swelling pressure of PEO-PBT copolymers and bursting pressure of human femoral bones, in: Biomaterial-Tissue Interfaces. Advances in Biomaterials, Vol. 10 (P.J. Doherty, R.L. Williams, D.F. Williams, A.J.C. Lee, eds.), pp. 357–361, Elsevier, Amsterdam.

    Google Scholar 

  • Samejima, M., Sugiyama, J., Igarashi, K., Eriksson, K.E.L. 1997. Enzymatic hydrolysis of bacterial cellulose, Carbohydr. Res. 305(2), 281–288.

    Article  Google Scholar 

  • Sandford, P.A. 1989. Chitosan: commercial uses and potential applications, in: Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications (T. Anthonsen, P. Sandford, eds.), pp. 51–69, Elsevier, New York.

    Google Scholar 

  • Sandler, S.R., Karo, W. 1974. Polyesters, in: Polymer Syntheses, Vol. 1 (H.H. Wasseman ed.), pp. 55–72, Academic Press Inc., Orlando.

    Google Scholar 

  • Santerre, J.P., Labow, R.S., Adams, G.A. 1993. Enzyme-biomaterial interactions: effect of biosystems on degradation of polyurethanes, J. Biomed. Mater. Res. 27, 97–109.

    Article  Google Scholar 

  • Santin, M., Motta, A., Freddi, G., Cannas, M. 1999. In vitro evaluation of the inflammatory potential of the silk fibroin, J. Biomed. Mater. Res. 46(3), 382–389.

    Article  Google Scholar 

  • Sanz, L.E., Patterson, J.A., Kamath, R., Willett, G., Ahmed, S.W., Butterfield, A.B. 1988. Comparison of Maxon suture with Vicryl, chromic catgut, and PDS sutures in fascial closure in rats, Obstet. Gynecol. 71(3), 418–422.

    Google Scholar 

  • Schacht, E.H. 1990. Using biodegradable polymers in advanced drug delivery systems, Med. Dev. Technol. 1(1), 15–21.

    Google Scholar 

  • Schacht, E., Crommen, J. 1990. Bioerodable sustained release implants, US Patent, 4 975 280.

    Google Scholar 

  • Schlegel, A.K., Möhler, H., Busch, F., Mehl, A. 1997. Preclinical and clinical studies of a collagen membrane (Bio-Gide), Biomaterials 18(7), 535–538.

    Article  Google Scholar 

  • Schmitt, E.E., Polistina, R.A. 1967. Surgical sutures, US Patent 3 297 033, Jan. 10.

    Google Scholar 

  • Schollenberger, C.S. 1988. Thermoplastic polyurethane elastomers, in: Handbook of Elastomers (A.K. Bhowmock, H.L. Stephens, eds.), Ch. 11, pp. 375–409, Marcel Dekker Inc., New York.

    Google Scholar 

  • Schollenberger, C.S., Stewart, F.D. 1973. Thermoplastic polyurethane hydrolysis stability, Angew. Makromol. Chem. 29/30, 413–430.

    Google Scholar 

  • Schwartz, L.B. 1990. Tryptase from human mast cells: biochemistry, biology and clinical utility, Monogr. Allergy 27, 90–113.

    Google Scholar 

  • Scopelianos, A.G. 1994. Polyphosphazenes as new biomaterials, in: Biomedical Polymers. Designed-to-Degrade Systems (S.W. Shalaby, ed.), pp. 153–172, Hanser Publ., Munich.

    Google Scholar 

  • Scott, J.E. 1989. Secondary structures in hyaluronan solutions: chemical and biological implications, in: The Biology of Hyaluronan, Ciba Foundation Symposium Series No. 143, pp. 6–20, John Wiley & Sons, Chichester.

    Google Scholar 

  • Sefton, M.V., Woodhouse, K.A. 1998. Tissue engineering, J. Cutan. Med. Surg., Dec 3 (Suppl 1), 18–23.

    Google Scholar 

  • Sendil, D., Gursel, I., Wise, D.L., Hasirci, V. 1999. Antibiotic release from biodegradable PHBV microparticles, J. Controlled Release 59(2), 207–217.

    Article  Google Scholar 

  • Seves, A., Romano, M., Maifreni, T., Sora, S., Ciferri, O. 1998. The microbial degradation of silk: a laboratory investigation, Int. Biodeterior. Biodegrad. 42(4), 203–211.

    Google Scholar 

  • Shalaby, S.W. 1988. Bioabsorbable polymers, in: Encyclopedia of Pharmaceutical Technology, Vol. 1, (J. Swarbrick, J.C. Boylan, eds.), pp. 465–476, Marcel Dekker Inc., New York.

    Google Scholar 

  • Shalaby, S.W., Jamiolkowski, D.D. 1980. Polyesteramides derived from bisoxamidodiols and dicarboxylic acids, US Patent, 4 209 607, June 24.

    Google Scholar 

  • Shalaby, S.W., Johnson, R.A. 1994. Synthetic absorbable polyesters, in: Biomedical Polymers. Designed-to-Degrade Systems (S.W. Shalaby ed.), pp. 1–34, Hanser Publ., Munich.

    Google Scholar 

  • Shi, Y., Ploof, J., Correia, A. 1999. Increasing antibody production with hollow-fiber bioreactors, IVD Technology Magazine, May, 37–40.

    Google Scholar 

  • Sidman, K.R., Schwope, A.D., Steber, W.D., Rudolph, S.E., Poulin, S.B. 1980. Biodegradable, implantable sustained release systems based on glutamic acid copolymers, J. Membrane Sci. 7, 277–291.

    Article  Google Scholar 

  • Silver, F.H., Marks, M., Kato, Y.P., Li, C., Pulapura, S., Kohn, J. 1992. Tissue compatibility of tyrosine-derived polycarbonates and polyiminocarbonates: an initial evaluation, J. Long Term Eff. Med. Implants 1(4), 329–346.

    Google Scholar 

  • Silver, F.H., Pins, G.D., Wang, M.C., Christiansen, D. 1995. Collagenous biomaterials as models for tissue inducing implants, in: Encyclopaedic Handbook of Biomaterials and Bioengineering, Part A: Materials (D.L. Wise, ed.), pp. 63–70, Marcel Dekker Inc., New York.

    Google Scholar 

  • Sinclair, R.G. 1977. Copolymers of L-lactide and epsilon caprolactone, US Patent, 3 057 537, Nov. 8.

    Google Scholar 

  • Sinha, V.R., Khosla, L. 1998. Bioabsorbable polymers for implantable therapeutic systems, Drug Dev. Ind. Pharm. 24(12), 1129–1138.

    Article  Google Scholar 

  • Skondia, V., Davydov, A., Belykh, S., Heusghem, C. 1987. Chemical and physicochemical aspects of biocompatible orthopaedic polymer (BOP) in bone surgery, J. Int. Med. Res. 15, 293–302.

    Google Scholar 

  • Smidsrod, O., Skjak-Braek, G. 1990. Alginate as immobilization matrix for cells, Trends Biotechnol. 8(3), 71–78.

    Google Scholar 

  • Smith, R., Oliver, C., Williams, D.F. 1987a. The enzymatic degradation of polymers in vivo, J. Biomed. Mater. Res. 21, 991–1003.

    Google Scholar 

  • Smith, R., Williams, D.F., Oliver, C. 1987b. The biodegradation of poly(ether urethanes), J. Biomed. Mater. Res. 21, 1149–1166.

    Google Scholar 

  • Sorell, J.M., Carrino, D.A., Caplan, A.I. 1996. Regulated expression of chondroitin sulfates at sites of epithelial-mesenchymal interaction: spatio-temporal patterning identified with anti-chondroitin sulfate monoclonal antibodies, Int. J. Dev. Neurosci. 14(3), 233–248.

    Google Scholar 

  • Stankiewicz, B.A., Mastalerz, M., Hof, C.H.J., Bierstedt, A., Flannery, M.B., Briggs, D.E.G., Evershed, R.P. 1998. Biodegradation of the chitin-protein complex in crustacean cuticle, Org. Geochem. 28(1–2), 67–76.

    Google Scholar 

  • St. Pierre, T., Chiellini, E. 1986. Biodegradability of synthetic polymers used for medical and pharmaceutical applications: Part I-Principles of hydrolysis, J. Bioact. Compatible Polym. 1, 467–497.

    Google Scholar 

  • Sung, H.W., Huang, D.M., Chang, W.H., Huang, L.L., Tsai, C.C., Liang, I.L. 1999. Gelatinderived bioadhesives for closing skin wounds: an in vivo study, J. Biomater. Sci., Polym. Ed. 10(7), 751–771.

    Google Scholar 

  • Szycher, M. 1991. Biostability of polyurethane elastomers: a critical review, in: Blood Compatible Materials and Devices (C.P. Sharma and M. Szycher, eds.), pp. 33–85, Technomic Publ., Lancaster, PA.

    Google Scholar 

  • Szycher, M., Lee, S.J. 1992. Modern wound dressings: a systematic approach to wound healing, J. Biomater. Appl. 7(2), 142–213.

    Google Scholar 

  • Tabata, Y., Ikada, Y. 1999. Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities, Biomaterials 20(22), 2169–2175.

    Article  Google Scholar 

  • Tabata, Y., Matsui, Y., Ikada, Y. 1998. Growth factor release from amylopectin hydrogel based on copper coordination, J. Controlled Release 56(1–3), 135–148.

    Google Scholar 

  • Takahara, A., Coury, A.J., Hergenrother, R.W., Cooper, S.L. 1991a. Effect of soft segment chemistry on the biostability of segmented polyurethanes. I. In vitro oxidation, J. Biomed. Mater. Res. 25, 341–356.

    Google Scholar 

  • Takahara, A., Hergenrother, R.W., Coury, A.J., Cooper, S.L. 1991b. Effect of soft segment chemistry on the biostability of segmented polyurethanes. II. In vitro hydrolytic degradation and lipid sorption, J. Biomed. Mater. Res. 26, 801–818.

    Google Scholar 

  • Test, S., Weiss, S. 1986. The generation of utilization of chlorinated oxidants by human neutrophils, Adv. Free Radical Biol. Med. 2, 91–116.

    Article  Google Scholar 

  • Timmins, M.R., Gilmore, D.F., Fuller, R.C., Lenz, R.W. 1993. Bacterial polyesters and their biodegradation, in: Biodegradable Polymers and Packaging (C. Ching, D. Kaplan, E. Thomas, eds.), pp. 119–130, Technomic Publ. Co., Lancaster, PA.

    Google Scholar 

  • Tokiwa, Y., Suzuki, T. 1977. Hydrolysis of polyesters by lipases, Nature 270, 76–78.

    Article  Google Scholar 

  • Tomihata, K., Ikada, Y. 1997. Preparation of cross-linked hyaluronic acid films of low water content, Biomaterials 18(3), 189–195.

    Article  Google Scholar 

  • Tomita, N., Tamai, S., Morihara, T., Ikeuchi, K., Ikada, Y. 1993. Handling characteristics of braided suture materials for tight tying, J. Appl. Biomater. 4(1), 61–65.

    Article  Google Scholar 

  • Tormala, P., Vasenius, J., Vainionpaa, S., Laiho, J., Pohjonen, T., Rokkanen, P. 1991. Ultra-high-strength absorbable self-reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures: in vitro and in vivo study, J. Biomed. Mater. Res. 25, 1–22.

    Google Scholar 

  • Treib, J., Baron, J.F., Grauer, M.T., Strauss, R.G. 1999. An international view of hydroxyethyl starches, Intensive Care Med. 25(3), 258–268.

    Article  Google Scholar 

  • Trimbos, J.B., Booster, M., Peters, A.A. 1991. Mechanical knot performance of a new generation polydioxanon suture (PDS-2), Acta Obstet. Gynecol. Scand. 70(2), 157–159.

    Google Scholar 

  • Tseng, Y., Tabata, Y., Hyon, S., Ikada, Y. 1990. In vitro toxicity of 2-cyanoacrylate polymers by cell culture method, J. Biomed. Mater. Res. 24, 1355–1367.

    Google Scholar 

  • Tunc, D.C. 1995. Orientruded polylactide based body-absorbable osteosynthesis devices: a short review, J. Biomater. Sci. Polym. Ed. 7(4), 375–380.

    MathSciNet  Google Scholar 

  • Ulrich, S., Kuntz, G., Anita, R. 1992. Haemostyptic preparations on the basis of collagen alone and as fixed combination with fibrin glue, Clin. Mater. 9(3), 169–177.

    Google Scholar 

  • Vainionpaa, S., Rokkanen, P., Tormala, P. 1989. Surgical applications of biodegradable polymers in human tissue, Prog. Polym. Sci. 14, 679–716.

    Article  Google Scholar 

  • van Blitterswijk, C.A., Bakker, D., Leenders, H., Brink, J., Hesseling, S.C., Bovell, Y.P., Radder, A.M., Sakkers, R.J.B., Gaillard, M.L., Heinze, P.H., Beumer, G.J. 1992. Interfacial reactions leading to bone-bonding with PEO-PBT copolymers (Polyactive®), in: Bone Bonding Materials (P. Ducheyne, T. Kokubo, C.A. van Blitterswijk, eds.), pp. 13–30, Reed Healthcare Communications, Leiderdorp.

    Google Scholar 

  • van der Elst, M., Klein, C.P.A.T., Patka, P., Haarman, H.J.T.M., 2000. Biodegradable fracture fixation devices, in: Biomaterials and Bioengineering Handbook (D.L. Wise, ed.), Ch. 22, pp. 509–524, Marcel Dekker, New York.

    Google Scholar 

  • van Dorp, A.G., Verhoeven, M.C., Koerten, H.K., van der Nat van der Meij, T.H., van Blitterswijk, C.A., Ponec, M. 1998. Dermal regeneration in full-thickness wounds in Yucatan miniature pigs using a biodegradable copolymer, Wound Repair Regen. 6(6), 556–568.

    Google Scholar 

  • van Dorp, A.G., Verhoeven, M.C., Koerten, H.K., van Blitterswijk, C.A., Ponec, M. 1999. Bilayered biodegradable poly(ethylene glycol)/poly(butylene terephthalate) copolymer (Polyactive) as substrate for human fibroblasts and keratinocytes, J. Biomed. Mater. Res. 47(3), 292–300.

    Google Scholar 

  • Vandorpe, J., Schacht, E., Dunn, E., Hawley, A., Stolnik, S., Davis, S.S., Garnett, M.C., Davies, M.C., Illum, L. 1997a. Long circulating biodegradable poly(phosphazene) nanoparticle surface modified with poly(phosphazene)-poly(ethylene oxide) copolymer, Biomaterials 18(17) 1147–1152.

    Article  Google Scholar 

  • Vandorpe, J., Schacht, E., Dejardin, S., Lemmouchi, Y. 1997b. Biodegradable polyphosphazenes for biomedical applications, in: Handbook of Biodegradable Polymers (A.J. Domb, J. Kost, D.M. Wiseman, eds.), Ch. 9, pp. 161–182, Harwood Academic Publisher, Singapore.

    Google Scholar 

  • Varum, K.M., Myhr, M.M., Hjerde, R.J.N., Smidsrud, O. 1997. In vitro degradation rates of partially N-acetylated chitosans in human serum, Carbohydr. Res. 299(1–2), 99–101.

    Google Scholar 

  • Veis, A. 1983. Characterization of soluble collagens by physical techniques, in: Methods in Enzymology (L.W. Cunningham, D.F. Fredericksen, eds.), pp. 186–217, Academic Press, London.

    Google Scholar 

  • Verheyen, C.C.P.M., de Wijn, J.R., van Blitterswijk, C.A., de Groot, K. 1992. Evaluation of hydroxylapatite/poly-(L-lactide) composites: Mechanical behaviour, J. Biomed. Mater. Res. 26, 1277–1296.

    Article  Google Scholar 

  • Vert, M. 1989. Bioresorbable polymers for temporary therapeutic applications, Angew. Makromol. Chem. 166/167, 155–168.

    Google Scholar 

  • Vert, M., Guerin, P. 1991. Biodegradable aliphatic polyesters of the poly(hydroxy acid)-type for temporary therapeutic applications, in: Biomaterial Degradation: Fundamental Aspects and Related Clinical Phenomena (M.A. Barbosa, ed.), pp. 35–51, Elsevier, Amsterdam.

    Google Scholar 

  • Vervoort, L., Rombaut, P., Van den Mooter, G., Augustijns, P., Kinget, R. 1998. Insulin hydrogels. II. In vitro degradation studies, Int. J. Pharm. 172(1–2), 137–145.

    Google Scholar 

  • Vinard, E., Eloy, R., Descotes, J., Brudon, J. R., Guidicelli, H., Magne, J. L., Patra, P., Berruet, R., Huc, A., Chauchard, J. 1988, Stability of performances of vascular prostheses retrospective study of 22 cases of human implanted prostheses, J. Biomed. Mater. Res. 22, 633–648.

    Article  Google Scholar 

  • Vinard, E., Eloy, R., Descotes, J., Brudon, J.R., Guidicelli, H., Patra, P., Streichenberger, R., David, M. 1991. Human vascular graft failure and frequency of infection, J. Biomed. Mater. Res 25, 499–513.

    Article  Google Scholar 

  • von Oepen, R., Michaeli, W. 1992. Injection moulding of biodegradable implants, Clin. Mater. 10, 21–28.

    Google Scholar 

  • Wang, M.Y., Levy, M.L., Mittler, M.A., Liu, C.Y., Johnston, S., McComb, J.G. 1999. A prospective analysis of the use of octyl acrylate tissue adhesive for wound closure in pediatric neurosurgery, Pediatr. Neurosurg. 30(4), 186–188.

    Article  Google Scholar 

  • Wehrenberg, R.H. 1981. Polylactic acid polymers: strong, degradable thermoplastics, Mater. Eng. 94(3), 63–66.

    Google Scholar 

  • Weigel, P.H., Fuller, G.M., LeBoeuf, R.D. 1986. A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing, J. Theor. Biol. 119, 219–234.

    Google Scholar 

  • Wierik, G.H., Eissens, A.C., Bergsma, J., Arends-Scholte, A.W., Bolhuis, G.K. 1997. A new generation starch product as excipient in pharmaceutical tablets. III. Parameters affecting controlled drug release from tablets based on high surface area retrograded pregelatinized potato starch, Int. J. Pharm. 157(2), 181–187.

    Google Scholar 

  • Williams, D.F. 1981. Enzymatic hydrolysis of polylactic acid, Eng. Med. 10, 5–7.

    Google Scholar 

  • Williams, D.F. 1984. The biodegradation of surgical polymers, in: Polyurethanes in Biomedical Engineering (H. Planck, G. Egbers, I. Sirè, eds.), pp. 93–102, Elsevier, Amsterdam.

    Google Scholar 

  • Williams, D.F. 1990a. Biodegradation of medical polymers, in: Concise Encyclopedia of Medical and Dental Materials (D.F. Williams, ed.), pp. 69–74, Pergamon Press, Oxford.

    Google Scholar 

  • Williams, D.F. 1990b. The role of active species within tissue in degradation processes, in: Degradable Materials. Perspectives, Issues and Opportunities (S.A. Barenberg, J.L. Brash, R. Narayan, A.E. Redpath, eds.), pp. 323–355, CRC Press, Boca Raton.

    Google Scholar 

  • Williams, D.F. 1991. Objectivity in the evaluation of biological safety of medical devices and biomaterials, Med. Dev. Technol, 2(1), 44–48.

    Google Scholar 

  • Williams, D.F., Chu, C.C., Dwyer, J. 1984. Effects of enzymes and gamma irradiation on the tensile strength and morphology of poly(p-dioxanone), J. Appl. Polym. Sci. 29, 1865–1877.

    Article  Google Scholar 

  • Williams, J.C.L., Watson, S.J., Boydell, S. 1995. Properties, in Nylon Plastics Handbook (M.I. Kohan, ed.), pp. 293–358, Hanser Publ., Munich.

    Google Scholar 

  • Zaikov, G.E. 1985. Quantitative aspects of polymer degradation in the living body, JMS-Rev. Macromol. Chem. Phys. C25(4), 551–597.

    MathSciNet  Google Scholar 

  • Zellin G., Gritli-Linde, A., Linde, A. 1995. Healing of mandibular defects with different biodegradable and non-biodegradable membranes: an experimental study in rats, Biomaterials 16, 601–609.

    Article  Google Scholar 

  • Zhang, X., Wyss, U.P., Pichora, D., Goosen, M.F.A. 1993. Biodegradable polymers for orthopedic applications: synthesis and processability of poly(L-lactide) and poly-lactide-co-ε-caprolactone), Pure Appl. Chem. A30, 933–947.

    Google Scholar 

  • Zhang, X., Wyss, U.P., Pichora, D., Goosen, M.F.A. 1994. An investigation of poly(lactic acid) degradation, J. Bioact. Compat. Mater. 9(1), 80–100.

    Google Scholar 

  • Zhang, Y.O., Zhu, J., Gu, R.A. 1998. Improved biosensor for glucose based on glucose oxidase-immobilized silk fibroin membrane, Appl. Biochem. Biotechnol. 75(2–3), 215–233.

    Google Scholar 

  • Zhao, Q., Marchant, R.E., Anderson, J.M., Hiltner, A. 1987. Long term biodegradation in vitro of poly(ether urethane urea), a mechanical property study, Polymer 28, 2040–2046.

    Article  Google Scholar 

  • Zhu, K.J., Xiangzhou, L., Shilin, Y. 1990. Preparation, characterization and properties of polylactide(PLA)-poly(ethylene glycol) (PEG) copolymers: a potential drug carrier, J. Appl. Polym. Sci. 39, 1–9.

    Article  Google Scholar 

  • Zizokis, J.P. 1984. Chitin, Chitosan and Related Enzymes, pp. 75–85, Academic Press, Orlando.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fambri, L., Migliaresi, C., Kesenci, K., Piskin, E. (2002). Biodegradable Polymers. In: Barbucci, R. (eds) Integrated Biomaterials Science. Springer, Boston, MA. https://doi.org/10.1007/0-306-47583-9_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-47583-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46678-6

  • Online ISBN: 978-0-306-47583-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics