Advertisement

Biodegradable Polymers

  • Luca Fambri
  • Claudio Migliaresi
  • Kemal Kesenci
  • Erhan Piskin
Chapter

Keywords

Drug Delivery System Silk Fibroin Biodegradable Polymer Edible Coating Regenerate Silk Fibroin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abatangelo, G., Barbucci, R., Brun, P., Lamponi, S. 1997. Biocompatibility and enzymatic degradation studies on sulphated hyaluronic acid derivatives, Biomaterials 18(21), 1411–1415.CrossRefGoogle Scholar
  2. Allcock, H.R. 1972. Phosphorus-Nitrogen Compounds. Cyclic, Linear, and High Polymeric Systems, Academic Press, New York.Google Scholar
  3. Allcock, H.R. 1990, Polyphosphazenes as new biomedical and bioactive materials, in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin, R. Langer, eds.), Ch. 5, pp. 163–193, Marcel Dekker, New York.Google Scholar
  4. Allcock H.R. 1998, Functional polyphosphazenes, in: Functional Polymers. Modern Synthetic Methods and Novel Structures (A.O. Patil, D.N. Schulz, B.N. Novak, eds.), Vol. 704, Ch. 18, pp. 261–275, ACS Symposium Series, Washington.Google Scholar
  5. Allcock, H.R., Kwon, S. 1989. An ionically cross-linkable polyphosphazene: Poly[bis(car-boxylactophenoxy)phosphazene] and its hydrogels and membranes, Macromolecules 22, 75–79.Google Scholar
  6. Allcock, H.R., Fuller, T.J., Mack, D.P., Matsumura, K., Smeltz, K.M. 1977. Phosphazene compounds. Synthesis of poly[(amino acid alkylester)phosphazenes], Macromolecules 10, 824–830.CrossRefGoogle Scholar
  7. Allcock, H.R., Fuller, T.J., Matsumura, K. 1982. Hydrolysis pathways for aminophosphazenes, Inorg. Chem. 21, 515–521.CrossRefGoogle Scholar
  8. Allcock, H.R., Pucher, S.R., Scopelianos, A.G. 1994. Synthesis of poly(organophosphazenes) with glycolic acid ester and lactic acid ester side groups-Prototypes for new bioerodible polymers, Macromolecules 27, 1–4.Google Scholar
  9. Amass, W., Amass, A., Tighe, B. 1998. A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies, Polym. Int. 47, 89–144.CrossRefGoogle Scholar
  10. Amiel, G.E., Sukhotnik. I., Kawar, B., Siplovich, L. 1999. Use of N-buty l-2-cyanoacrylate in elective surgical incisions — long-term outcomes, J. Am. Coll. Surg. 189(1), 21–25.CrossRefGoogle Scholar
  11. Anderson, J.M. 1986. In vivo biocompatibility studies: perspectives on the evaluation of biomedical polymer biocompatibility, in: Polymeric Biomaterials (E. Piskin, A.S. Hoffman, eds.), pp. 29–39, Martin Nijhoff Publishers, Dordrecht.Google Scholar
  12. Anderson, A.B., Clapper, D.L. 1998. Coatings for blood-contacting devices, Med. Plast. Biomat. 3, 16–20.Google Scholar
  13. Andriano, K., Daniels, A.U., Heller, J., 2000. In vitro and in vivo degradation studies of absorbable poly(orthoester) proposed for internal tissue fixation devices, in: Biomaterials and Bioengineering Handbook (D.L. Wise, ed.), Ch. 25, pp. 577–601, Marcel Dekker, New York.Google Scholar
  14. Arem, A. 1985. Collagen modifications, Clin. Plast. Surg. 12, 209–220.Google Scholar
  15. Atala, A., Mooney, D.J., Vacanti, J.P., Langer, R. 1997. Synthetic Biodegradable Polymer Scaffold: Tissue Engineering, Birkhäuser, Boston.Google Scholar
  16. Atkins, T.W., Peacock, S.J. 1996. In vitro biodegradation of poly(beta-hydroxybutyratehy-droxyvalerate) microspheres exposed to Hanks’ buffer, newborn calf serum, pancreatin and synthetic gastric juice, J. Biomater. Sci. Polym. 7(12), 1075–1084.Google Scholar
  17. Auger, F.A., Rouabhia, M., Goulet, F., Berthod, F., Moulin, V., Germain, L. 1998. Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels: clinical and fundamental applications, Med. Biol. Eng. Comput. 36(6), 801–812.Google Scholar
  18. Bakker, D., van Blitterswijk, C.A., Hesseling, S.C., Koerten, H.K., Kuijpers, W., Grote, J.J. 1990. Biocompatibility of a polyether urethane, polypropylene oxide, and a polyether polyester copolymer. A qualitative and quantitative study of three alloplastic tympanic membrane materials in the rat middle ear, J. Biomed. Mater. Res. 24(4), 489–515.CrossRefGoogle Scholar
  19. Balazs, E.A. 1995. Hyaluronan biomaterials: Medical applications, in: Handbook of Biomaterials and Applications (D.L. Wise, ed.), pp. 2719–2741, Marcel Dekker, New York.Google Scholar
  20. Barrows, T.H. 1986. Degradable implant materials: a review of synthetic absorbable polymers and their application, Clin. Mater. 1, 233–257.Google Scholar
  21. Barrows, T.H. 1991. Synthetic bioabsorbable polymers, in: High Performance Biomaterials (M. Szycher, ed.), pp. 243–257, Technomic Publ, Lancaster, PA.Google Scholar
  22. Barrows, T.H. 1994. Bioabsorbable poly(ester-amides), in: Biomedical Polymers. Designed-to-Degrade Systems (S.W. Shalaby, ed.), pp. 97–116, Hanser Publ., Munich.Google Scholar
  23. Barrows, T.H., Grossing, D.M., Hegdahl, D.W. 1983. Poly(ester-amides): a new class of synthetic absorbable polymers, Trans. Soc. Biomater. 6, 109.Google Scholar
  24. Bartone, F.F., Shervey, P.D., Gardner, P.J. 1976. Long term tissue responses to catgut and collagen sutures, Invest. Urol. 13(6), 390–394.Google Scholar
  25. Becker, M.A., Tuross, N. 1993. Initial degradative changes found in bombyx mori silk fibroin, in: Silk Polymers: Materials Science and Biotechnology (D. Kaplan, W. Adams, B. Farmer, C. Viney, eds.), ACS Symp. Ser., 544, 254–268.Google Scholar
  26. Benicewitz, B.C., Hopper, P.K. 1990, Polymers for absorbable surgical sutures-Part I, J. Bioact. Biocomp. Polym. 5 (October), 453–472.Google Scholar
  27. Benicewitz, B.C., Hopper, P.K. 1991. Polymers for absorbable surgical sutures-Part II, J. Bioact. Biocomp. Polym. 6 (January), 64–94.Google Scholar
  28. Bergsma, J.E., de Bruijn, W.C., Rozema, F.R., Bos, R.R.M., Boering, G. 1995. Late degradation tissue response to poly(L-lactide) bone plates and screws, Biomaterials 16, 25–31.Google Scholar
  29. Berry, A.R., Wilson, M.C., Thomson, J.W.W., McNair, T.J. 1981. Polydioxanone: a new synthetic absorbable suture, J. R. Coll. Surg. Edinburgh 26, 170–172.Google Scholar
  30. Beumer, G.J., van Blitterswijk, C.A., Ponec, M. 1994. Biocompatibility of a biodegradable matrix used as a skin substitute: an in vivo evaluation, J. Biomed. Mater. Res. 28(5), 545–552.CrossRefGoogle Scholar
  31. Bischoff, C.A., Walden, P. 1893. Ueber das glycolid und seine homologen, Berichte 26, 262–265.Google Scholar
  32. Boeree, N.R., Dove, J., Cooper, J.J., Knowles, J., Hastings, G.W. 1993. Development of a degradable composite for orthopaedic use: mechanical evaluation of an hydroxyapatite-polyhydroxybutyrate composite material, Biomaterials 14(10), 793–796.CrossRefGoogle Scholar
  33. Bogdansky, S. 1990. Natural polymers as drug delivery systems, in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin, R. Langer eds.), pp. 231–259, Marcel Dekker Inc., New York.Google Scholar
  34. Borgdorff, P., Van den Berg, R.H., Vis, M.A.., Van den Bos, G.C., Tangelder, G.J. 1999, Pump-induced platelet aggregation in albumin-coated extracorporeal systems, J. Thorac. Cardiovasc. Surg. 118(5), 946–952.Google Scholar
  35. Bos, G.W., Scharenborg, N.M., Poot, A.A., Engbers, G.H., Beugeling, T., Van Aken, W.G., Feijen, J. 1999. Blood compatibility of surfaces with immobilized albumin-heparin conjugate and effect of endothelial cell seeding on platelet adhesion, J. Biomed. Mater. Res. 47(3), 279–291.CrossRefGoogle Scholar
  36. Bouillot, P., Ubrich, N., Sommer, F., Duc, T.M., Loeffler, J.P., Dellacherie, E. 1999. Protein encapsulation in biodegradable amphiphilic microspheres, Int. J. Pharm. 181(2), 159–172.CrossRefGoogle Scholar
  37. Bouvier, M., Chawla, A.S., Hinberg, I. 1991. In vitro degradation of a poly(ether urethane) by trypsine, J. Biomed. Mater. Res. 25, 773–789.CrossRefGoogle Scholar
  38. Brem, H. 1990. Polymers to treat brain tumours, Biomaterials 11, 699–701.CrossRefGoogle Scholar
  39. Britritto, M.M., Bell, J.P., Brenckle, S., Huang, S.J., Knox, J.R. 1979. Synthesis and biodegradation of polymers derived from α-acids, J. Appl. Polym. Sci., Appl. Polym. Symp., 35, 405–414.Google Scholar
  40. Brookfield, P., Murphy, P., Harker, R., MacRae, E. 1997. Starch degradation and starch pattern indices; interpretation and relationship to maturity, Post. Biol. Technol. 11(1), 23–30.Google Scholar
  41. Brown, D.W., Lowry, R.E., Smith, L.E. 1980. Kinetics of hydrolytic aging of polyester urethane elastomers, Macromolecules 13, 248–252.CrossRefGoogle Scholar
  42. Brown, R.S., 2000. Studies in amide hydrolysis: the acid, base and water reaction, in: The Amide Linkage (A. Greenberg, C.M. Breneman, J.F. Liebman, eds.), pp. 85–114, John Wiley & Sons, New York.Google Scholar
  43. Brumback, G.F., McPherson, S.D., Jr. 1967. Reconstituted collagen sutures in corneal surgery. An experimental and clinical evaluation, J. Ophthalmol. 64(2), 222–227.Google Scholar
  44. Bulstra, S.K., Geesink, R.G., Bakker, D., Bulstra, T.H., Bouwmeester, S.J., van der Linden, A.J. 1996. Femoral canal occlusion in total hip replacement using a resorbable and flexible cement restrictor, J. Bone Joint Surg. Br. 78(6), 892–898.CrossRefGoogle Scholar
  45. Buron, F., Bourgois, R., Burny, F., Chaboteaux C., d’Hericourt, J El Banna, S., Pasteels, J.L., Sintzoff, S., Vienne, A. 1994. BOP: Biocompatible osteoconductive polymer: an experimental approach, Clin. Mater. 16, 217–221.CrossRefGoogle Scholar
  46. Caghey, G.H. 1991. The structure and airway biology of mast cell proteinases, Am. J. Resp. Cell. Mol. Biol. 4(5), 387–394.Google Scholar
  47. Capello, J., McGrath, K.P. 1993. Spinning of protein polymer fibers, in: Silk Polymers: Materials Science and Biotechnology (D. Kaplan, W. Adams, B. Farmer, C. Viney, eds.), ACS Symp. Ser. 544, 310–326.Google Scholar
  48. Cardia, G., Regina, G. 1989. Degenerative Dacron graft changes: is there a biological component in this textile defect? A case report, Vasc. Surg. 23(3), 245–247.Google Scholar
  49. Carothers, W.H., Dorough, G.L., Van Natta, F.J. 1932. Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters, J. Am. Chem. Soc., 54, 761–772.Google Scholar
  50. Chambliss, W.G. 1983. The forgotten dosage form: enteric-coated tablets, Pharm. Technol. September, 124–140.Google Scholar
  51. Chandra, R., Rustgi, R. 1998. Biodegradable polymers, Progr. Polym. Sci. 23, 1273–1335.CrossRefGoogle Scholar
  52. Chapman, T.M. 1989. Models for polyurethanes hydrolysis under moderately acidic conditions: a comparative study of hydrolysis rates of urethanes, ureas and amides, J. Appl. Polym. Sci., Polym. Chem. 27, 1993–2005.Google Scholar
  53. Charles, G.G., Daniel, M. 1985. The synthesis of some potentially blood compatible heparin-like polymeric materials, in: Frontiers of Polymers and Advanced Materials, Advances in Biomedical Polymers Series (G.G. Charles, ed.), pp. 277–284, Plenum Press, New York.Google Scholar
  54. Chasin, M., Langer, R. 1990. Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker, New York.Google Scholar
  55. Chasin, M., Lewis, D., Langer, R. 1988. Polyanhydrides for controlled drug delivery, Biopharm. Manuf. 1, 33–46.Google Scholar
  56. Chasin, M., Domb., A., Ron, E., Mathiowitz, E., Langer, R., Leong, K., Laurencin, C., Brem, H., Grossman, S. 1990. Polyanhydrides as drug delivery systems, in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin, R. Langer, eds.), pp. 43–70, Marcel Dekker, New York.Google Scholar
  57. Choi, N.S., Heller, J. 1978. Drug delivery devices manufactured from poly(orthoesters) and poly(orthocarbonates), US Patent, 4 093 709, June 6.Google Scholar
  58. Choi, N.S., Heller, J. 1979. Erodible agent releasing device comprising poly(orthoesters) and poly(orthocarbonates), US Patent, 4 138 344, Feb. 6.Google Scholar
  59. Choi, Y.S., Hong, S.R, Lee, Y.M., Song, K.W., Park, M.H., Nam, Y.S. 1999. Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge, J. Biomed. Mater. Res. 48(5), 631–639.CrossRefGoogle Scholar
  60. Christel, P., Chabot, F., Leray, J.L., Morin, C., Vert, M. 1982. Biodegradable composites for internal fixation, in: Advances in Biomaterials. Biomaterials 1980, Vol. 3 (D.G. Winter, D.F. Gibbons, J. Plench, Jr., eds.), pp. 271–280, John Wiley & Sons, New York.Google Scholar
  61. Chu, C.C. 1981. Hydrolytic degradation of polyglycolic acid: Tensile strength and crystallinity study, J. Appl. Polym. Sci. 26, 1727–1734.CrossRefGoogle Scholar
  62. Chu, C.C. 1983. Survey of clinically important wound closure biomaterials, in: Biocompatible Polymers, Metals, and Composites (M. Szycher, ed.), Ch. 22, pp. 477–523, Technomic Publ. Co., Lancaster, PA.Google Scholar
  63. Chu, C.C. 1995. Biodegradable polymeric biomaterials: an overview, in: The Biomedical Engineering Handbook (J. D. Bronzino, ed.), pp. 611–626, CRC Press, Boca Raton.Google Scholar
  64. Chu, C.C., Williams, D.F. 1983. The effect of gamma irradiation on the enzymatic degradation of polyglycolic acid absorbable sutures, J. Biomed. Mater. Res. 17, 1029–1040.CrossRefGoogle Scholar
  65. Chu, C.C., Lee, K.H. 2000. The role of free radicals in degradation of biodegradable biomaterials, in: Biomaterials and Bioengineering Handbook (D.L. Wise, ed.), Ch. 5, pp. 157–177, Marcel Dekker, New York.Google Scholar
  66. Chu, C.C., Zhang, L., Coyne, L.D. 1995. Effect of gamma irradiation and irradiation temperature on hydrolytic degradation of synthetic absorbable sutures, J. Appl. Polym. Sci., 56, 1275–1294.CrossRefGoogle Scholar
  67. Chujo, K., Kobayashi, H., Suzuki, J., Tokuhara, S., Tanabe, M. 1967. Ring-opening polymerization of glycolide, Makromol. Chem. 100, 262–266.Google Scholar
  68. Chung, L.Y., Shmidt, R.J., Hamlyn, P.F., Sagar, B.F., Andrews, A.M. 1994. Biocompatibility of potential wound management products: Fungal mycelia as a source of chitin/chitosan and their effect on the proliferation of human F1000 fibroblasts in culture, J. Biomed. Mat. Res. 28, 463–469.Google Scholar
  69. Chvapil, M., Kronenthal, R.L., van Winkle, W. 1973. Medical and surgical applications of collagen, Int. Rev. Connect. Tissue Res. 6, 1–61.Google Scholar
  70. Ciapetti, G., Stea, S., Cenni, E., Sudanese, A., Marraro, D., Toni, A., Pizzoferrato, A. 1994. Cytotoxicity testing of cyanoacrylates using direct contact assay on cell cultures, Biomaterials 15(1), 63–67.CrossRefGoogle Scholar
  71. Cohn, D., Younes, H. 1988. Biodegradable PEO/PELA block copolymers, J. Biomed. Mater. Res. 22, 993–1009.CrossRefGoogle Scholar
  72. Cohn, D., Younes, H. 1989. Compositional and structural analysis of PELA biodegradable block copolymers degrading under in vitro conditions, Biomaterials 10, 466–474.Google Scholar
  73. Coleman, W.P. 1996. Assessment of a new device for injecting bovine collagen-The ADG needle, Dermatol. Surg. 22(2), 175–176.Google Scholar
  74. Coury, A.J. 1996. Chemical and biochemical degradation of polymers, in: Biomaterials Science: An Introduction to Materials in Medicine (B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, eds.), pp. 243–260, Academic Press, San Diego.Google Scholar
  75. Coury, A.J., Cahalan, P.T., Schultz, E.L., Stokes, K.B. 1984. In vitro aging of implantable polyurethanes in metal ion solutions, Trans. Soc. Biomater. 7, 252.Google Scholar
  76. Crommen, J., Vandorpe, J., Schacht, E. 1993. Degradable polyphosphazenes for biomedical applications, J. Controlled Release 24, 167–180.CrossRefGoogle Scholar
  77. Dahiyat, B.I., Hostin, E., Posadas, E.M., Leong, K.W. 1993. Synthesis and characterization of putrescine-based poly(phosphoester-urethanes), J. Biomater. Sci. Polym. Ed. 4(5), 529–536.Google Scholar
  78. Daniels, A.U., Chang, M.K.O., Andriano, K.P., Heller, J. 1990. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone, J. Appl. Biomater. 1, 57–78.Google Scholar
  79. David, F.R. 1986. Liquid loaded pad for medical applications, US Patent, 4 588 400.Google Scholar
  80. Davies, M.C., Khan, M.A., Lynn, R.A., Heller, J., Watts, J.F. 1991. X-ray photoelectron spectroscopy analysis of the surface chemical structure of some biodegradable poly(orthoesters), Biomaterials 12(3), 305–308.CrossRefGoogle Scholar
  81. Davis, S.S., Illum, L., McVie, J.G., Tomlinson, E. 1984. Microspheres and Drug Therapy: Pharmaceutical, Immunological and Medical Aspects, pp. 50–55, Elsevier, Amsterdam.Google Scholar
  82. De Jaeger, R., Gleria, M. 1998. Poly(organophosphazene)s and related compounds: synthesis, properties and applications, Progr. Poym. Sci. 23, 179–276.Google Scholar
  83. Demura, M., Asakura, T., Kuroo, T. 1989. Immobilization of biocatalyst with bomboxy mori silk fibroin by several kinds of physical treatment and its application to glucose sensors, Biosensors 4, 361–372.CrossRefGoogle Scholar
  84. Doddi, N., Versfelt, C.C., Wasserman, D. 1977. Synthetic absorbable surgical devices of poly-dioxanone, US Patent, 4052 988.Google Scholar
  85. Doi, Y. 1990. Microbial Polyesters, Carl Hanser Verlag, New York.Google Scholar
  86. Domb, A.J., Amselem, S., Langer, R., Maniar, M. 1994. Polyanhydrides as carriers of drugs, in: Biomedical Polymers. Designed-to-Degrade Systems (S.W. Shalaby, ed.), pp. 69–96, Hanser Publ., Munich.Google Scholar
  87. Domb, A.J., Kost, J., Wiseman, D.M. 1997. Handbook for Biodegradable Polymers, Harwood Academic Publ., Singapore.Google Scholar
  88. Dongmei, Z., Hanfa, Z., Jianyi, N., Li, Y., Lingyun, J., Yukui, Z. 1998. Chin. J. Biotechnol. 14(4), 233–240.Google Scholar
  89. Edwards-Levy, F., Levy, M.C. 1999. Serum albumin-alginate coated beads: mechanical properties and stability, Biomaterials 20(21), 2069–2084.Google Scholar
  90. Engelberg, I., Kohn, J. 1991. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study, Biomaterials 12, 292–304.CrossRefGoogle Scholar
  91. Engler, R.J., Weber, C.B., Turnicky, R. 1986. Hypersensitivity to chromated catgut sutures: a case report and review of the literature, Ann. Allergy 56(4), 317–320.Google Scholar
  92. Fambri, L., Guerriero, A., Grimaldi, M., Migliaresi C. 1995. Effect of polymer purity on the in vitro degradation of compression moulded poly-DL-lactic acid materials 12th European Conference on Biomaterials, p. 38, Porto 10–13 September.Google Scholar
  93. Fambri, L., Pegoretti, A., Fenner, R., Incardona, S.D., Migliaresi, C. 1997. Biodegradable fibres of poly(L-lactic acid) produced by melt spinning, Polymer 38(1), 79–85.CrossRefGoogle Scholar
  94. Fambri, L., Pelz, M., Liedkte, H., Migliaresi, C. 2000. Production and characterisation of osteoinductive polylactide composites, Proceedings of 6th World Biomaterials Conference, p. 506, May 15–20, Kamuela, Hawaii.Google Scholar
  95. Feijen, J. 1986. Biodegradable polymers for medical purpose, in: Polymeric Biomaterials (E. Piskin, A.S. Hoffman, eds.), pp. 62–77, Martinus Nijhoff Publishers, Dordrecht.Google Scholar
  96. Ferguson, S., Wahl, D., Gogolewski, S. 1996. Enhancement of the mechanical properties of polylactides by solid-state extrusion. II. Poly(L-lactide), poly(L/D-lactide), and poly(L/DL-lactide, J. Biomed. Mater. Res. 30(4), 543–551.CrossRefGoogle Scholar
  97. Franssen, O., Stenekes, R.J., Hennink, W.E. 1999a. Controlled release of a model protein from enzymatically degrading dextran microspheres, J. Controlled Release 59(2), 219–228.CrossRefGoogle Scholar
  98. Franssen, O., Vandervennet, L., Roders, P., Hennink, W.E. 1999b. Degradable dextran hydrogels: controlled release of a model protein from cylinders and microspheres, J. Controlled Release 60(2–3), 211–221.Google Scholar
  99. Frazza, E.J., Schmitt, E.E. 1971. A new absorbable suture, J. Biomed. Mater. Res. Symp. 1, 43–58.Google Scholar
  100. Friess, W. 1998. Collagen-biomaterial for drug delivery, Eur. J. Pharm. Biopharm. 45(2), 113–136.Google Scholar
  101. Friess, W., Uludag, H., Foskett, S., Biron, R., Sargeant, C. 1999. Characterization of absorbable collagen sponges as rhBMP-2 carriers, Int. J. Pharm. 187(1), 91–99.CrossRefGoogle Scholar
  102. Fukuzaki, H., Yoshida, M., Asano, M., Kumakura, M. 1989. Synthesis of copoly(D,L-lactic acid) with relatively low molecular weight and in vitro degradation, Eur. Polym. J. 25, 1019–1026.Google Scholar
  103. Gaillard, M.L., van Blitterswijk, C.A. 1994. Pre-operative addition of calcium ions or calcium phosphate to PEO/PBT copolymers (Polyactive™)stimulates bone mineralization in vitro, J. Mater. Sci., Mater. Med. 5, 695–701.Google Scholar
  104. Gangrade, N., Price, J.C. 1991. Poly(hydroxybutyrate-hydroxyvalerate) microspheres containing progesterone: preparation, morphology and release properties, J. Microencapsul. 8(2), 185–202.Google Scholar
  105. Gennadios, A., McHugh, T.H., Weller, C.L., Kroctha, J.M. 1994. Edible coatings and films based on proteins, in: Edible Coating and Films to Improve Food Quality (J.M. Kroctha, E.A. Baldwin, M.O. Nisperos-Carriedo, eds.), pp. 201–277, Technomic Publ. Co., Lancaster, PA.Google Scholar
  106. Gilding, D.K. 1981. Biodegradable polymers, in: Biocompatibility of Clinical Implant Materials, Vol. 2 (D.F. Williams, ed.), pp. 209–232, CRC Press, Boca Raton.Google Scholar
  107. Gilding, O.K., Reed, A.M. 1979. Biodegradable polymers for use in surgery-polyglycolic/ polylactic acid homo-and copolymers: 1, Polymer 20, 1459–1464.Google Scholar
  108. Gogly, B., Dridi, M., Hornebeck W., Bonnefoix, M., Godeau, G., Pellat, B., 1999. Effect of heparin on the production of matrix metalloproteinases and tissue inhibitors of metalloproteinases by human dermal fibroblasts, Cell. Biol. Int. 23(3), 203–209.CrossRefGoogle Scholar
  109. Goissis, G., Marcantonio, E. Jr., Marcantonio, R.A., Lia, R.C., Cancian, D.C., de Carvalho, W.M. 1999. Biocompatibility studies of anionic collagen membranes with different degree of glutaraldehyde cross-linking, Biomaterials 20(1), 27–34.CrossRefGoogle Scholar
  110. Goodman, I. 1988. Polyesters, in: Encyclopedia of Polymers Science and Engineering, 2nd edn. (H.F. Mark, N.M. Bikales, C.G. Overberger, G. Menges, eds.), Vol. 12, pp. 1–75, John Wiley & Sons, New York.Google Scholar
  111. Gopferich A. 1999. Biodegradable polymers: Polyanhydrides, in: Encyclopedia of Controlled Drug Delivery (E. Mathiowitz, ed.), Vol. 1, pp. 60–71, John Wiley & Sons, New York.Google Scholar
  112. Gorham, S.D. 1991. Collagen, in: Biomaterials, Novel Materials from Biological Sources (D. Byron, ed.), Ch. 2, Stockton Press, New York.Google Scholar
  113. Goupil, D. 1996. Sutures, in: Biomaterials Science: An Introduction to Materials in Medicine (B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, eds.), pp. 356–360, Academic Press, San Diego.Google Scholar
  114. Goupta, M.C., Deshmukh, V.G. 1983. Radiation effects on poly(lactic acid), Polymer, 24, 827–830.Google Scholar
  115. Grasset, L., Cordier, D., Ville A. 1977. Woven silk as a carrier for the immobilization of enzymes, Biotechnol. Bioeng. 19(4), 611–618.CrossRefGoogle Scholar
  116. Greenwald, D., Shumway, S., Albear, P., Gottlieb, L. 1994. Mechanical comparison of 10 suture materials before and after in vivo incubation, J. Surg.Res. 56(4), 372–377.CrossRefGoogle Scholar
  117. Grijpma, D.W., Pennings, A.J. 1994. Copolymers of L-lactide. 2. Mechanical properties, Macromol. Chem. Phys. 195, 1649–1663.Google Scholar
  118. Grote, J.J., Bakker, D., Hesseling, S.C., van Blitterswijk, C.A. 1991. New alloplastic tympanic membrane material, Am. J. Otol. 12(5), 329–335.Google Scholar
  119. Guidoin, R., Couture, J. 1991. Polyesther prostheses: the outlook for the future, in: Blood Compatible Materials and Devices. Perspectives Towards the 21st Century (C.P. Sharma, M. Szycher, eds.), Ch. 13, pp. 221–236, Technomic Publ. Co., Lancaster, PA.Google Scholar
  120. Guillaume, Y.C., Peyrin, E., Berthelot, A. 1999. Chromatographic study of magnesium and calcium binding to immobilized human serum albumin, J. Chromatogr. B: Biomed. Sci. Appl. 728(2), 167–174.CrossRefGoogle Scholar
  121. Gumargalieva, K.Z., Moiseev, Y.V., Daurova, T.T., Voronkova, O.S. 1982. Effect of infections on the degradation of polyethylene terephthalate implants, Biomaterials 3(3), 177–180.CrossRefGoogle Scholar
  122. Hagenmaier, R.D., Shaw, P.E. 1990. Moisture permeability of edible films made with fatty acid and hydroxypropyl methylcellulose, J. Agric. Food Chem. 38, 1799–1803.CrossRefGoogle Scholar
  123. Hara, S., Yamakawa, M. 1995. Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori, J. Biol. Chem. 270(50), 29923–29927.Google Scholar
  124. Hasirci, V. 2000. Biodegradable biomedical polymers. Review of degradation of and in vivo responses to polylactides and polyhydroxyalkanoates, in: Biomaterials and Bioengineering Handbook (D.L. Wise, ed.), Ch. 4, pp. 141–155, Marcel Dekker, New York.Google Scholar
  125. Hastings, G.W. 1992. Cardiovascular Biomaterials, pp. 10–25, Springer-Verlag, London.Google Scholar
  126. Hawrylewicz, E.J., Zapata, J.J., Blair, W.H. 1995. Soy and experimental cancer: animal studies, J. Nutr. 125(3 Suppl), 698S–708S.Google Scholar
  127. Hegyeli, A. 1973. Use of organ cultures to evaluate biodegradation of polymer implant materials, J. Biomed. Mater. Res. 7, 205–214.CrossRefGoogle Scholar
  128. Heller, J. 1983. Use of polymers in controlled drug release, in: Biocompatible Polymers, Metals, and Composites (M. Szycher, ed.), Ch. 24, pp. 551–584, Technomic Publ. Co., Lancaster, PA.Google Scholar
  129. Heller, J. 1990. Development of poly(orthoesters), a historical overview, Biomaterials 11 (November), 659–665.Google Scholar
  130. Heller, J. 1996. Drug delivery systems, in: Biomaterials Science: An Introduction to Materials in Medicine (B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, eds.), pp. 346–356, Academic Press, San Diego.Google Scholar
  131. Heller, J., Daniels, A.U. 1994. Poly (ortho esters), in Biomedical Polymers. Designed-to-Degrade Systems (S.W. Shalaby, ed.), pp. 35–67, Hanser Publ., Munich.Google Scholar
  132. Heller, J., Gurny, R. 1999. Polyorthoesters, in: Encyclopedia of Controlled Drug Delivery (E. Mathiowitz, ed.), Vol. 2, pp. 852–874, John Wiley & Sons, New York.Google Scholar
  133. Heller, J., Sparer, R.V., Zentner, G.M. 1990a. Poly(ortho esters), in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin, R. Langer, eds.), Ch. 4, pp. 121–161, Marcel Dekker, New York.Google Scholar
  134. Heller, J., Ng, S.Y., Fritzinger, B.K., Roskov, K.V. 1990b. Controlled drug release from bioerodible hydrophobic ointments, Biomaterials 11 (May), 235–237.Google Scholar
  135. Heller, J., Pangburn, S.H., Roskov, K.V. 1990c. Development of enzymatically degradable protective coatings use in triggered drug delivery systems. II. Derivatized starch hydrogels, Biomaterials 11 (July), 345–350.Google Scholar
  136. Heller, J., Ng, S.Y., Fritzinger, B.K. 1992. Synthesis and characterization of a new family of poly(orthoester)s, Macromolecules 25, 3362–3364.CrossRefGoogle Scholar
  137. Heslot, H. 1998. Artificial fibrous proteins: a review, Biochimie 80(1), 19–31.CrossRefGoogle Scholar
  138. Hoekstra, D. 1999. Hyaluronan-modified surfaces for medical devices, Med. Dev. Diagn. Ind. Mag. Feb, 48–52.Google Scholar
  139. Hoenich, N.A., Stamp, S. 2000. Clinical investigation of the role of membrane structure on blood contact and solute transport characteristics of a cellulose membrane, Biomaterials 21(3), 317–324.CrossRefGoogle Scholar
  140. Hollinger, J.O. (ed.). 1995. Biomedical Applications of Synthetic Biodegradable Polymers, CRC Press, Boca Raton.Google Scholar
  141. Horncastle, J. 1995. Wound dressings. Past, present, and future, Med. Device Technol. 6(1), 30–36.Google Scholar
  142. Huang, S.J., Leong, K.W. 1989. Biodegradable polymers. Polymers derived from gelatin and lysin esters, Polym. Prepr. 20, 552–554.Google Scholar
  143. Hudson, S.M. 1994. Review of chitin and chitosan as fiber and film formers, J. Mater. Sci., Mater. Med. C34(3), 375–437.Google Scholar
  144. Huijun, L., Ramsden, L., Corke, H. 1998. Physical properties and enzymatic digestibility of acetylated and normal maize starch, Carbohydr. Polym. 34(4), 283–289.Google Scholar
  145. Hyon, S.-H., Jamshidi, K., Ikada, Y. 1984. Melt spinning of poly-L-lactide and hydrolysis of the fiber in vitro, in: Polymers as Biomaterials (S. Shalaby, A.S. Hoffmann, B.D. Ratner, T.A. Horbett, eds.), pp. 51–65, Plenum Press, New York.Google Scholar
  146. Ibim, S.E.M., Ambrosio, A.M.A., Kwon, M.S., El-Amin, S.F., Allcock, H.R., Laurencin, C.T. 1997. Novel polyphosphazene/poly(lactide-co-glycolide) blends: miscibility and degradation studies, Biomaterials 18, 1565–1569.Google Scholar
  147. Inouhe, K., Kurokawa, M., Nishikawa, S., Tsukada, M. 1998. Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells, J. Biochem. Biophys. Methods 37(3), 159–164.Google Scholar
  148. Ishihara, C., Hiratai, R., Tsuji, M., Yagi, K., Nose, M., Azuma, I. 1998. Mannan decelerates the clearence of human red blood cells in SCID mouse, Immunopharmacol. 38(3), 223–228.Google Scholar
  149. Jaffe, R., Wade, C.W.R., Hegyeli, A.F., Rice, R., Hodge, J. 1986. Synthesis and bioevaluation of alkyl 2-cyanoacryloyl glycolates as potential soft tissue adhesives, J. Biomed. Mater. Res. 20, 205–212.Google Scholar
  150. Johns, D.B., Lenz, R.W., Leucke, A. 1984. Lactones, in: Ring-opening Polymerization, Vol. 1 (K.J. Ivin, T. Saegusa, eds.), pp. 461–521, Elsevier Applied Science Publishers Ltd., 1984.Google Scholar
  151. Kalimo, K., Vainio, E. 1980. Wheat grain immunofluorescent antibodies as an indication of gluten sensitivity?, Br. J. Dermatol. 103(6), 657–661.Google Scholar
  152. Kane, J.B., Tompkins, R.G., Yarmush, M.L., Burke, J.F. 1996. Burn dressing, in: Biomaterials Science: An Introduction to Materials in Medicine (B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, eds.), pp. 360–370, Academic Press, San Diego.Google Scholar
  153. Kaplan, D.L., Wiley, B.J., Mayer, J.M., Arcidiacono, S., Keith, J., Lombardi, S.J., Ball, D., Allen, A.L. 1994. Bioabsorbable poly(ester-amides), in: Biomedical Polymers. Designed-to-Degrade Systems (S.W. Shalaby ed.), pp. 189–212, Hanser Publ., Munich.Google Scholar
  154. Karjalainen, T., Hiljanen, M., Malin, M., Seppala, J. 1996. Biodegradable lactone copolymers. III. Mechanical properties of ε-caprolactone and lactide copolymers after hydrolysis in vitro, J. Appl. Polym. Sci. 59, 1299–1304.CrossRefGoogle Scholar
  155. Kassab, A.C., Xu, K., Denkbas, E.B., Dou, Y., Zhao, S., Piskin, E. 1997. Rifampicin carrying polyhydroxybutyrate microspheres as a potential chemoembolization agent, J. Biomater. Sci., Polym. Ed. 8(12), 947–961.Google Scholar
  156. Katayama, S., Murakami, T., Takahashi, Y., Serita, H., Obuchi, Y., Ito, T. 1976. Synthesis of alternating polyamide esters by melt and solution polycondensation of N,N′-di(6-hydroxycaproyl) diamines and N-6-hydroxycaproyl aminoalcohol with terephthalic and adipic dimethyl esters and dichlorides, J. Appl. Polym. Sci. 20, 975–994.CrossRefGoogle Scholar
  157. Kemmish, D. 1993. The processing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-PBHV, in: Biodegradable Polymers and Packaging (C. Ching, D. Kaplan, E. Thomas, eds.), pp. 225–232, Technomic Publ. Co., Lancaster, PA.Google Scholar
  158. Kemnitzer, J.E., Gross, R.A., McCarthy, S.P. 1992. Stereochemical and morphoplogical effects on the degradation kinetics of poly(-hydroxybutyrate): a model study, Proc. ACS Div., Polym. Mater. Sci. Eng. 66, 405–407.Google Scholar
  159. Kester, J.J., Fennema, O. 1986. Edible films and coatings: a review, J. Food Sci. 40, 47–59.Google Scholar
  160. Kimura, Y. 1993. Biodegradable polymers, in: Biomedical Application of Polymeric Materials (T. Tsuruta, T. Hayashi, K. Kataoka, K. Ishihara, Y. Kimura, eds.), pp. 164–190, CRC Press, Boca Raton.Google Scholar
  161. King, M.W., Guidoin, R., Blais, P., Garton, A., Gunasekera, R. 1985. Degradation of polyester arterial prostheses: a physical or chemical mechanism?, in: Corrosion and Degradation of Implant Materials: Second Symposium (A.C. Fraker, C.D. Griffin, eds.), Vol. 859, pp. 294–307, ASTM STP.Google Scholar
  162. Klebanoff, S. 1982. Iodination catalyzed by xanthine oxidase system: Role of hydroxyl radicals, Biochemistry 21, 4110–4116.CrossRefGoogle Scholar
  163. Kocisova, E., Jancura, D., Sanchez-Cortes, S., Miskovsky, P., Chinsky, L., Garcia-Ramos, J.V. 1999. Interaction of antiviral and antitumor photoactive drug hypocrellin A with human serum albumin, J. Biomol. Struct. Dyn. 17(1), 111–120.Google Scholar
  164. Kohn, J. 1990. Pseudo poly(amino acids), in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin, R. Langer, eds.), Ch. 6, pp. 195–229, Marcel Dekker, New York.Google Scholar
  165. Kohn, J., Langer, R. 1986. Poly(iminocarbonates) as potential biomaterials, Biomaterials 7(3) May, 176–183.CrossRefGoogle Scholar
  166. Kopecek, J., Ulbrich, K. 1983. Biodegradation of biomedical polymers, Prog. Polym. Sci., 9, 1–58.CrossRefGoogle Scholar
  167. Kostopoulos, L., Karring, T. 1994. Guided bone regeneration in mandibular defects in rats using a bioresorbable polymer, Clin. Oral Implants Res. 5(2), 66–74.Google Scholar
  168. Kramer, P.A. 1974. Albumin microspheres as vehicles for achieving specificity in drug delivery, J. Pharm. Sci. 63, 1646–1647.Google Scholar
  169. Krogel, L, Bodmeier, R. 1999. Development of a multifunctional matrix drug delivery system surrounded by an impermeable cylinder, J. Controlled Release 61(1–2), 43–50.Google Scholar
  170. Kronenthal, R.L. 1975. Biodegradable polymers in medicine and surgery, in: Polymers in Medicine and Surgery (R.L. Kronental, Z. Oser, E. Martin, eds.), pp. 119–137, Plenum Press, New York.Google Scholar
  171. Kuen, Y.L., Wan, S.H., Won, H.P. 1995. Blood compatibility and biodegradability of partially N-acylated chitosan derivatives, Biomaterials 16(16), 1211–1216.Google Scholar
  172. Kulkarni R.K., Pani K.C., Neuman C., Leonard F. 1966. Polylactic acid for surgical implants, Arch. Surg. 93, 839–843.Google Scholar
  173. Kulkarni, R.K., Moore, E.G., Hegyeli, A.F., Leonard, F. 1971. Biodegradable poly(lactic acid) polymers, J. Biomed. Mater. Res. 5, 169–181.CrossRefGoogle Scholar
  174. Kumada, T., Nakano, S., Sone, Y., Kiriyama, S., Hisanaga, Y., Rikitoku, T., Tamoto, A., Honda, T. 1999. Clinical effectiveness of degradable starch microspheres in patients with liver cancer, Gan To Kagaku Ryoho 26(12), 1678–1683.Google Scholar
  175. Kurita, K. 1998. Chemistry and application of chitin and chitosan, Polym. Degrad. Stabil. 59(1–3), 117–120.Google Scholar
  176. Kurosaki, S., Otsuka, H., Kunitomo, M., Koyama, M., Pawankar, R., Matumoto K. 1999. Fibroin allergy. IgE mediated hypersensitivity to silk suture materials, Nippon Ika Daigaku Zasshi 66(1), 41–44.CrossRefGoogle Scholar
  177. Lanza, R.P., Langer, R., Chick, W.L. 1997. Principles of Tissue Engineering, Academic Press, San Diego.Google Scholar
  178. Laurencin, C.T., Koh, H.J., Neenan, T.X., Allcock, H.R., Langer, R. 1987. Controlled release using a new bioerodible polyphosphazene matrix system, J. Biomed. Mater. Res. 21, 1231–1246.CrossRefGoogle Scholar
  179. Laurent, T.C. 1970. Structure of hyaluronic acid, in: Chemistry and Molecular Biology of the Intercellular Matrix (E.A. Balazs, ed.), pp. 703–732, Academic Press, London.Google Scholar
  180. Lawton, J.W. 1996. Effect of starch type on the properties of starch containing films, Carbohydr. Polym. 29(3), 203–208.CrossRefGoogle Scholar
  181. Leadley, S.R., Shakesheff, K.M., Davies, M.C., Heller, J., Franson, N.M., Paul, A.J., Brown, A.M., Watts, J.F. 1998. The use of SIMS, XPS and in situ AFM to probe the acid catalysed hydrolysis of poly(orthoesters), Biomaterials Aug 19(15), 1353–1360.Google Scholar
  182. Lee, T.K., Sokoloski, T.D., Royer, G.P. 1981. Serum albumin beads: an injectable, biodegradable system for the sustained release of drugs, Science 213, 230–235.Google Scholar
  183. Leenslag, J.W., Kroes, M.T., Pennings, A.J., Van der Lei, B. 1988. A compliant, biodegradable vascular graft: Basic aspects of its construction and biological performance, New Polym. Mater. 1(2), 111–126.Google Scholar
  184. Lehninger, A.L. 1977. Biochemistry, 3rd edn., Worth Publishers Inc., New York.Google Scholar
  185. Lelah, M.D., Cooper, S.L. 1986. Polyurethanes in Medicine, CRC Press, Boca Raton.Google Scholar
  186. Lemm, W. 1984. Biodegradation of polyurethanes, in: Polyurethanes in Biomedical Engineering (H. Planck, G. Egbers, I. Sirè, eds.), pp. 103–108, Elsevier, Amsterdam.Google Scholar
  187. Lemm, W., Bucherl, E.S. 1983. The degradation of some polyurethanes in vitro and in vivo, in: Biomaterial and Biomechanics (P. Ducheyne, G. Van der Perr, A.E. Aubert, eds.), pp. 319–324, Elsevier, Amsterdam.Google Scholar
  188. Lenaerts, V., Couvreur, P., Christiansen-Leyh, D., Joiris, E., Roland, M., Rollman, B., Speiser, P. 1984. Degradation of poly(isobutyl cyanoacrylate) nanoparticles, Biomaterials 5, 65–68.CrossRefGoogle Scholar
  189. Leong, K.W., Brott, B.C., Langer, R. 1985. Bioerodible polyanhydrides as drug carrier matrices I: characterization, degradation and release characteristics, J. Biomed. Mater. Res. 19, 941–955.CrossRefGoogle Scholar
  190. Leung, K.S., Hung, L.K., Leung, P.C. 1994. Biodegradable Implants in Fracture Fixation, World Scientific Publ. Co., Singapore.Google Scholar
  191. Lewis, D.H. 1990. Controlled release of bioactive agents from lactide/glycolide polymers, in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin, R. Langer, eds.), pp. 1–41, Marcel Dekker, New York.Google Scholar
  192. Li, S., Vert, M. 1999. Biodegradable polymers: Polyesters, in: Encyclopedia of Controlled Drug Delivery (E. Mathiowitz, ed.), Vol. 1, pp. 71–93, John Wiley & Sons, New York.Google Scholar
  193. Liu, Y., Chen, X., Qian, J., Liu, H., Shao, Z., Deng, J., Yu, T. 1997. Immobilization of glucose oxidase with the blend of regenerated silk fibroin and poly(vinyl alcohol) and its application to a 1,1’-dimethylferrocene-mediating glucose sensor, Appl. Biochem. Biotechnol. 62(2–3), 105–117.Google Scholar
  194. Ljungberg, C., Johansson-Ruden, G., Bostrom, K.J., Novikov, L., Wiberg, M. 1999. Neuronal survival using a resorbable synthetic conduit as an alternative to primary nerve repair, Microsurgery 19(6), 259–264.CrossRefGoogle Scholar
  195. Lou, X., Chirila, T.V. 1999. Swelling behavior and mechanical properties of chemically cross-linked gelatin gels for biomedical use, J. Biomater. Appl. 14(2), 184–191.Google Scholar
  196. Maarek, J.M., Guidoin, R., Aubin, M., Prud’homme, R.E. 1984. Molecular weight characterization of virgin and explained polyester arterial prostheses, J. Biomed. Mater. Res. 18, 881–894.CrossRefGoogle Scholar
  197. MacGreger, E.A., Greenwood, C.T. 1980. Polymers in Nature, Chs. 3 and 6, John Wiley & Sons, New York.Google Scholar
  198. Maeda, M., Inoue, Y., Kaneko, K., Sugamori, T., Iwase, H., Tsurutani, R. 2000. Chitin and its derivatives, in: Biomaterials and Bioengineering Handbook (D.L. Wise, ed.), Ch. 39, pp. 867–880, Marcel Dekker, New York.Google Scholar
  199. Magnus, G., Dunleavy, R.A., Critchfield, F.E. 1966. Stability of urethane elastomers in water, dry air and moist air environments, Rubber. Chem. Technol. 39, 1328.Google Scholar
  200. Mao, H.Q., Kadiyala, I., Leong, K.W., Zhao, Z., Dang, W. 1999. Biodegradable polymers: Poly(phosphoester)s, in: Encyclopedia of Controlled Drug Delivery (E. Mathiowitz, ed.), Vol. 1, pp. 45–60, John Wiley & Sons, New York.Google Scholar
  201. Marck, K.W., Wildevuur C.H., Sederel W.L., Bantjes, A., Fejen, J. 1977. Biodegradability and tissue reaction of random copolymers of L-leucine, L-aspartic acid and L-aspartic acid esters, J. Biomed. Mater. Res. 11, 405–422.CrossRefGoogle Scholar
  202. Masar, B., Cefelin, P., Lipatova, T.E., Bakalo, L.A., Lugovskaya, G.G. 1979. Synthesis of polyurethanes and investigation of their hydrolytic stability, J. Polym, Sci., Polym. Symp. 66, 259–268.Google Scholar
  203. Matsusue, Y., Yamamuro, T., Oka, M., Shikinami, Y., Hyon, S.-H., Ikada, Y. 1992. In vitro and in vivo studies on bioabsorbable ultra-high-strength poly(L-lactide) rods, J. Biomed. Mater. Res. 26, 1553–1567.CrossRefGoogle Scholar
  204. Meckel, W., Goyert, W., Wieder, W. 1996. Thermoplastic polyurethane elastomers, in: Thermoplastic Elastomers, 2nd edn. (G. Holden, N.R. Legge, R. Quirk, H.E. Schroeder, eds.), Ch. 2, pp. 16–45, Hanser Publishers, Munich.Google Scholar
  205. Meijer, G.J., van Dooren, A., Gaillard, M.L., Dalmeijer, R., de Putter, C., Koole, R., van Blitterswijk, C.A. 1996. Polyactive as a bone-filler in a beagle dog model, Int. J. Oral Maxillofac. Surg. 25(3), 210–216.Google Scholar
  206. Meijs, G.F., McCarthy, S.J., Rizzardo, E., Chen, Y.C., Chatalier, R., Brandwood, A., Schindhelm, K. 1993. Degradation of medical grade polyurethane elastomers: the effect of hydrogen peroxide in vitro, J. Biomed. Mater. Res. 27, 345–356.CrossRefGoogle Scholar
  207. Migliaresi, C., Cohn, D., De Lollis, A., Fambri, L. 1991a. Dynamic mechanical and calorimetric analysis of compression molded PLLA of different molecular weights: effect of the thermal treatments, J. Appl. Polym. Sci. 43(1), 83–95.CrossRefGoogle Scholar
  208. Migliaresi, C., De Lollis, A., Fambri, L., Cohn, D. 1991b. The effect of the thermal treament on the crystallinity of different molecular weight PLLA biodegradable polymers, Clin. Mater. 8, 111–118.Google Scholar
  209. Migliaresi, C., Fambri, L., Cohn, D. 1994. A study on the in vitro degradation of poly(lactic acid), J. Biomater. Sci. Polym. Ed. 5(6), 591–606.Google Scholar
  210. Miller, A.G. 1964. Degradation of synthetic polypeptides. III. Degradation of poly-α-lysin by proteolytic enzymes in 0.20 M sodium chloride, J. Am. Chem. Soc. 86, 3818–3822.Google Scholar
  211. Minoura, N., Tsukada, M., Nagura, M. 1990. Physico-chemical properties of silk fibroin membrane as a biomaterial, Biomaterials 11, 430–434.CrossRefGoogle Scholar
  212. Mirkovitch, V., Akutsu, T., Kolff, W.J. 1962. Polyurethane aortas in dogs. Three year results, Trans. Am. Soc. Artif. Intern. Organs 8, 79.Google Scholar
  213. Mitchell, J., Irons, L., Palmer, G.J. 1970. A study of the spread and adsorbed films of milk proteins, Biochim. Biophys. Acta 200(1), 138–150.Google Scholar
  214. Mormann, W., Wagner, J. 1988. Solvolytic degradation of aliphatic polyesteroligomers: poly(tetramethylene adipate) diol, Angew. Makromol. Chem. 160, 1–15.Google Scholar
  215. Murphy, K.S., Enders, N.A., Mahjour, M., Fawzi, M.B. 1986. A comparative evaluation of aqueous enteric polymers in capsule coating, Pharm. Technol. October, 36–45.Google Scholar
  216. Muzzarelli, R.A. 1993. Biochemical significance of exogenous chitins and chitosans in animals and patients, Carbohydr. Polym. 20, 7–15.Google Scholar
  217. Muzzarelli, R.A., Jeuniaux, C., Gooday, G.W. 1986. Evaluation of chitosan as a new hemostatic agent: in vitro and in vivo experiments, in: Chitin in Nature and Technology (G. Fradet, S. Brister, D. Mulder, J. Lough, B.L. Averbach, eds.), pp. 78–85, Plenum Press, New York.Google Scholar
  218. Nakamura, T., Shimizu, Y., Matsui, T., Okumura, N., Hyon, S.H., Nishiya, K. 1992. A novel bioabsorbable monofilament surgical suture made from (ε-caprolactone, L-lactide) copolymer, in: Degradation Phenomena on Polymeric Biomaterials (H. Planck, M. Dauner, M. Renardy, eds.), pp. 153–162, Springer-Verlag, Berlin-Heidelberg.Google Scholar
  219. Narayan, R. 1990. Introduction, in: Degradable Materials. Perspectives, Issues and Opportunities (S.A. Barenberg, J.L. Brash, R. Narayan, A.E. Redpath, eds.), pp. 1–37, CRC Press, Boca Raton.Google Scholar
  220. Nimni, M.E. 1983. Collagen: structure, function and metabolism in normal and fibrotic tissues, Semin. Arthritis Rheum. XIII(1), 1–86.Google Scholar
  221. Nisperos-Carriedo, M.O. 1994. Edible coatings and films based on polysaccharides, in: Edible Coatings and Films to Improve Food Quality (J.M. Krochta, E.A. Baldwin, M.O. Nisperos-Carriedo, eds.), pp. 305–336, Technomic Publ. Co., Lancaster, PA.Google Scholar
  222. Nose, Y. 1990. Artificial kidney, is it really not necessary?, Artif. Organs 14, 245–251.Google Scholar
  223. Okada, T., Hayashi, T., Ikada, Y. 1992. Degradation of collagen suture in vitro and in vivo, Biomaterials 13(7), 448–454.CrossRefGoogle Scholar
  224. Ossefort, Z.T., Testroet, F.B. 1966. Hydrolytic stability of urethane elastomers, Rubber. Chem. Technol. 39(6), 1308–1327.Google Scholar
  225. Ottenbrite, R.M., Huang, S.J., Park, K. 1996. Hydrogels and Biodegradable Polymers for Bioapplications, ACS Symp. Ser. 627, Am. Chem. Soc., Washington DC.Google Scholar
  226. Pachence, J.M., Berg, R.A., Silver, F.H. 1987. Collagen: Its place in the medical device industry, Med. Device Diagn. Ind. 9, 49–55.Google Scholar
  227. Padgett, T., Han, I.Y., Dawson, P.L. 1998. Incorporation of food-grade antimicrobial compounds into biodegradable packaging films, J. Food Prot. 61(10), 1330–1335.Google Scholar
  228. Pandit, A., Ashar, R., Feldman, D. 1999. The effect of TGF-beta delivered through a collagen scaffold on wound healing, J. Invest. Surg. 12(2), 89–100.Google Scholar
  229. Parikh, M., Gross, R.A., McCarthy, S.P. 1992. The effect of crystalline morphology on enzymatic degradation kinetics, Proc. ACS Div., Polym. Mat. Sci. Eng. 66, 408–409.Google Scholar
  230. Park, K., Shalaby, W.S.W., Park, H. 1993. Biodegradable Hydrogels for Drug Delivery, Technomic Publ. Co., Lancaster, PA.Google Scholar
  231. Patrick, C.W., Mikos, A.G., McIntire, L.V. 1998. Frontiers in Tissue Engineering, Pergamon Press, New York.Google Scholar
  232. Payne, L.G., Jenkins, S.A., Andrianov, A., Roberts, B.E. 1995a, Water-soluble phosphazene polymers for parenteral and mucosal vaccine delivery, in: Vaccine Design: The Submit and Adjuvant Approach (M.F. Powell, M.J. Newman, eds.), Ch. 20, pp. 473–493, Plenum Press, New York.Google Scholar
  233. Payne, L.G., Jenkins, S.A., Andrianov, A., Langer, R., Roberts, B.E. 1995b. Xenobiotic polymers as vaccine vehicles, Adv. Exp. Med. Biol. 371B, 1475–1480.Google Scholar
  234. Pegoretti, A., Fambri, L., Migliaresi, C. 1997. In vitro degradation of poly(L-lactic acid) fibers produced by melt spinning, J. Appl. Polym. Sci. 64, 213–223.CrossRefGoogle Scholar
  235. Peppas, N.A. 1987. Hydrogels in medicine and pharmacy: properties and applications, in: Hydrogels in Medicine and Pharmacy, Vol. III, pp. 189–225, CRC Press Inc., Boca Raton.Google Scholar
  236. Pernerstorfer, T., Jilma, B., Eichler, H.G, Aull, S., Handler, S., Speiser, W. 1999. Heparin lowers plasma levels of activated factor VII, Br. J. Haematol. 105(4), 1127–1129.CrossRefGoogle Scholar
  237. Phua, S.K., Castillo, E., Anderson, J.M., Hiltner, A. 1987. Biodegradation of a polyurethane in vitro, J. Biomed. Mater. Res. 21, 231–246.CrossRefGoogle Scholar
  238. Piskin, E. 1994. Biodegradable polymers as biomaterials, J. Biomater. Sci. Polym. Ed. 6(9), 795–775.Google Scholar
  239. Pitt, C. 1990. Poly-ε-caprolactone and its copolymers, in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin, R. Langer, eds.), pp. 71–120, Marcel Dekker, New York.Google Scholar
  240. Pitt, C.G., Jeffcoat, A.R., Zweidinger, R.A., Schindler, A. 1979. Sustained drug-delivery systems. I. The permeability of poly(DL-lactic acid), Poly(-ε-caprolactone), and their copolymers, J. Biomed. Mater. Res. 13, 497–507.CrossRefGoogle Scholar
  241. Pitt, C.G., Gratzl, M.M., Kimmel, G.L., Surles, J., Schindler, A. 1981. Aliphatic polyesters. II. The degradation of poly(DL-lactic acid), Poly(-ε-caprolactone), and their copolymers in vivo, Biomaterials 2 (October), 215–220.Google Scholar
  242. Pulapura, S., Li, C., Kohn, J. 1990. Structure-property relationships for the design of polyiminocarbonates, Biomaterials 11(9) Nov., 666–678.CrossRefGoogle Scholar
  243. Qian, J., Liu, Y., Liu, H., Yu, T., Deng, J. 1996. An amperometric new methylene blue N-mediating sensor for hydrogen peroxide based on regenerated silk fibroin as an immobilization matrix for peroxidase, Anal. Biochem. 236(2), 208–214.CrossRefGoogle Scholar
  244. Radder, A.M., Davies, J.E., Leenders, H., van Blitterswijk, C.A. 1994a. Interfacial behavior of PEO/PBT copolymers (Polyactive) in a calvarial system: an in vitro study, J. Biomed. Mater. Res. 28(2), 269–277.Google Scholar
  245. Radder, A.M., Leenders, H., van Blitterswijk, C.A. 1994b. Interface reactions to PEO/PBT copolymers (Polyactive) after implantation in cortical bone, J. Biomed. Mater. Res. 28(2), 141–151.Google Scholar
  246. Ramshaw, J.A.M., Glattauer, V., Werkmeister, J.A. 2000. Stabilization of collagen in medical devices, in: Biomaterials and Bioengineering Handbook (D.L. Wise, ed.), Ch. 32, pp. 717–738, Marcel Dekker, New York.Google Scholar
  247. Rastelli, A., Beccaro, M., Biviano, F., Calderini, G., Pastorello, A. 1990. Hyaluronic acid esters, a new class of semisynthetic biopolymers: chemical and physico-chemical properties, in: Clinical Implant Materials-Advances in Biomaterials, Vol. 9 (G. Heimke, U. Soltesz, A.J.C. Lee, eds.), pp. 199–206, Elsevier, Amsterdam.Google Scholar
  248. Ratner, B.D., Gladhill, K.W., Horbett, T.A. 1988. Analysis of in vitro enzymatic and oxidative degradation of polyurethanes, J. Biomed. Mater. Res. 22, 509–527.CrossRefGoogle Scholar
  249. Ratto, J.A., Stenhouse, P.J., Auerbach, M., Mitchell, J., Farrell, R. 1999. Processing, performance and biodegrability of a thermoplastic aliphatic polyester/starch system, Polymer 40(24), 6777–6788.CrossRefGoogle Scholar
  250. Ray, J.A., Doddi, N., Regula, D., Williams, J.A., Melveger, A. 1981. Polydioxanone (PDS); a novel monofilament synthetic absorbable suture, Surg. Gynecol. Obstet. 153, 497–507.Google Scholar
  251. Regan, E.F., Dunnington, J.H. 1966. Collagen sutures in cataract surgery: clinical and experimental observations, Trans. Am. Ophthalmol. Soc. 64, 39–49.Google Scholar
  252. Reineccius, G.A. 1994. Flavour encapsulation, in: Edible Coatings and Films to Improve Food Quality (J.M. Krochta, E.A. Baldwin, M.O. Nisperos-Carriedo, eds.), pp. 105–120, Technomic Publ. Co., Lancaster, PA.Google Scholar
  253. Ribeiro, A.J., Neufeld, R.J., Arnaud, P., Chaumeil, J.C. 1999. Microencapsulation of lipophilic drugs in chitosan-coated alginate microspheres, Int. J. Pharm. 187(1), 115–123.CrossRefGoogle Scholar
  254. Richards, M., Dahiyat, B.I., Arm, D.M., Brown, P.R., Leong, K.W. 1991. Evaluation of polyphosphates and polyphosphonates as degradable biomaterials, J. Biomed. Mater. Res. 25, 1151–1167.CrossRefGoogle Scholar
  255. Rindlav-Westling, A., Stading, M., Hermansson, A.M., Gatenholm, P. 1998. Structure, barrier and mechanical properties of amylose and amylopectin films, Carbohydr. Polym. 36, 217–224.Google Scholar
  256. Rogalla, C.J. 1997. Autologous collagen: a new treatment for dermal defects, Minim. Invasive Surg. Nurs. 11(2), 67–69.Google Scholar
  257. Ronis, M.L., Harwick, J.D., Fung, R., Dellavecchia, M. 1984. Review of cyanocrylate tissue glues with emphasis on their otorhinolaryngological applications, Laryngoscope 94, 210–213.Google Scholar
  258. Rouxhet, L., Duhoux, F., Borecky, O., Legras, R., Schneider, Y.J. 1998. Adsorption of albumin, collagen, and fibronectin on the surface of poly(hydroxybutyrate-hydroxyvalerate) (PHB/ HV) and of poly(epsilon-caprolactone) (PCL) films modified by an alkaline hydrolysis and of poly(ethylene terephthalate) (PET) track-etched membranes, J. Biomater. Sci., Polym. Ed. 9(12), 1279–1304.Google Scholar
  259. Rudakova, T.E., Zaikov, G.E., Voronkova, O.S., Daurova, T.T., Degtyareva, S.M. 1979. The kinetic specificity of polyethylene terephthalate degradation in the living body, J. Polym. Sci., Polym. Symp. 66, 277–281.Google Scholar
  260. Sakkers, R.J.B., de Wijn, J.R., van Blitterswijk, C.A. 1992. Relation between swelling pressure of PEO-PBT copolymers and bursting pressure of human femoral bones, in: Biomaterial-Tissue Interfaces. Advances in Biomaterials, Vol. 10 (P.J. Doherty, R.L. Williams, D.F. Williams, A.J.C. Lee, eds.), pp. 357–361, Elsevier, Amsterdam.Google Scholar
  261. Samejima, M., Sugiyama, J., Igarashi, K., Eriksson, K.E.L. 1997. Enzymatic hydrolysis of bacterial cellulose, Carbohydr. Res. 305(2), 281–288.CrossRefGoogle Scholar
  262. Sandford, P.A. 1989. Chitosan: commercial uses and potential applications, in: Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications (T. Anthonsen, P. Sandford, eds.), pp. 51–69, Elsevier, New York.Google Scholar
  263. Sandler, S.R., Karo, W. 1974. Polyesters, in: Polymer Syntheses, Vol. 1 (H.H. Wasseman ed.), pp. 55–72, Academic Press Inc., Orlando.Google Scholar
  264. Santerre, J.P., Labow, R.S., Adams, G.A. 1993. Enzyme-biomaterial interactions: effect of biosystems on degradation of polyurethanes, J. Biomed. Mater. Res. 27, 97–109.CrossRefGoogle Scholar
  265. Santin, M., Motta, A., Freddi, G., Cannas, M. 1999. In vitro evaluation of the inflammatory potential of the silk fibroin, J. Biomed. Mater. Res. 46(3), 382–389.CrossRefGoogle Scholar
  266. Sanz, L.E., Patterson, J.A., Kamath, R., Willett, G., Ahmed, S.W., Butterfield, A.B. 1988. Comparison of Maxon suture with Vicryl, chromic catgut, and PDS sutures in fascial closure in rats, Obstet. Gynecol. 71(3), 418–422.Google Scholar
  267. Schacht, E.H. 1990. Using biodegradable polymers in advanced drug delivery systems, Med. Dev. Technol. 1(1), 15–21.Google Scholar
  268. Schacht, E., Crommen, J. 1990. Bioerodable sustained release implants, US Patent, 4 975 280.Google Scholar
  269. Schlegel, A.K., Möhler, H., Busch, F., Mehl, A. 1997. Preclinical and clinical studies of a collagen membrane (Bio-Gide), Biomaterials 18(7), 535–538.CrossRefGoogle Scholar
  270. Schmitt, E.E., Polistina, R.A. 1967. Surgical sutures, US Patent 3 297 033, Jan. 10.Google Scholar
  271. Schollenberger, C.S. 1988. Thermoplastic polyurethane elastomers, in: Handbook of Elastomers (A.K. Bhowmock, H.L. Stephens, eds.), Ch. 11, pp. 375–409, Marcel Dekker Inc., New York.Google Scholar
  272. Schollenberger, C.S., Stewart, F.D. 1973. Thermoplastic polyurethane hydrolysis stability, Angew. Makromol. Chem. 29/30, 413–430.Google Scholar
  273. Schwartz, L.B. 1990. Tryptase from human mast cells: biochemistry, biology and clinical utility, Monogr. Allergy 27, 90–113.Google Scholar
  274. Scopelianos, A.G. 1994. Polyphosphazenes as new biomaterials, in: Biomedical Polymers. Designed-to-Degrade Systems (S.W. Shalaby, ed.), pp. 153–172, Hanser Publ., Munich.Google Scholar
  275. Scott, J.E. 1989. Secondary structures in hyaluronan solutions: chemical and biological implications, in: The Biology of Hyaluronan, Ciba Foundation Symposium Series No. 143, pp. 6–20, John Wiley & Sons, Chichester.Google Scholar
  276. Sefton, M.V., Woodhouse, K.A. 1998. Tissue engineering, J. Cutan. Med. Surg., Dec 3 (Suppl 1), 18–23.Google Scholar
  277. Sendil, D., Gursel, I., Wise, D.L., Hasirci, V. 1999. Antibiotic release from biodegradable PHBV microparticles, J. Controlled Release 59(2), 207–217.CrossRefGoogle Scholar
  278. Seves, A., Romano, M., Maifreni, T., Sora, S., Ciferri, O. 1998. The microbial degradation of silk: a laboratory investigation, Int. Biodeterior. Biodegrad. 42(4), 203–211.Google Scholar
  279. Shalaby, S.W. 1988. Bioabsorbable polymers, in: Encyclopedia of Pharmaceutical Technology, Vol. 1, (J. Swarbrick, J.C. Boylan, eds.), pp. 465–476, Marcel Dekker Inc., New York.Google Scholar
  280. Shalaby, S.W., Jamiolkowski, D.D. 1980. Polyesteramides derived from bisoxamidodiols and dicarboxylic acids, US Patent, 4 209 607, June 24.Google Scholar
  281. Shalaby, S.W., Johnson, R.A. 1994. Synthetic absorbable polyesters, in: Biomedical Polymers. Designed-to-Degrade Systems (S.W. Shalaby ed.), pp. 1–34, Hanser Publ., Munich.Google Scholar
  282. Shi, Y., Ploof, J., Correia, A. 1999. Increasing antibody production with hollow-fiber bioreactors, IVD Technology Magazine, May, 37–40.Google Scholar
  283. Sidman, K.R., Schwope, A.D., Steber, W.D., Rudolph, S.E., Poulin, S.B. 1980. Biodegradable, implantable sustained release systems based on glutamic acid copolymers, J. Membrane Sci. 7, 277–291.CrossRefGoogle Scholar
  284. Silver, F.H., Marks, M., Kato, Y.P., Li, C., Pulapura, S., Kohn, J. 1992. Tissue compatibility of tyrosine-derived polycarbonates and polyiminocarbonates: an initial evaluation, J. Long Term Eff. Med. Implants 1(4), 329–346.Google Scholar
  285. Silver, F.H., Pins, G.D., Wang, M.C., Christiansen, D. 1995. Collagenous biomaterials as models for tissue inducing implants, in: Encyclopaedic Handbook of Biomaterials and Bioengineering, Part A: Materials (D.L. Wise, ed.), pp. 63–70, Marcel Dekker Inc., New York.Google Scholar
  286. Sinclair, R.G. 1977. Copolymers of L-lactide and epsilon caprolactone, US Patent, 3 057 537, Nov. 8.Google Scholar
  287. Sinha, V.R., Khosla, L. 1998. Bioabsorbable polymers for implantable therapeutic systems, Drug Dev. Ind. Pharm. 24(12), 1129–1138.CrossRefGoogle Scholar
  288. Skondia, V., Davydov, A., Belykh, S., Heusghem, C. 1987. Chemical and physicochemical aspects of biocompatible orthopaedic polymer (BOP) in bone surgery, J. Int. Med. Res. 15, 293–302.Google Scholar
  289. Smidsrod, O., Skjak-Braek, G. 1990. Alginate as immobilization matrix for cells, Trends Biotechnol. 8(3), 71–78.Google Scholar
  290. Smith, R., Oliver, C., Williams, D.F. 1987a. The enzymatic degradation of polymers in vivo, J. Biomed. Mater. Res. 21, 991–1003.Google Scholar
  291. Smith, R., Williams, D.F., Oliver, C. 1987b. The biodegradation of poly(ether urethanes), J. Biomed. Mater. Res. 21, 1149–1166.Google Scholar
  292. Sorell, J.M., Carrino, D.A., Caplan, A.I. 1996. Regulated expression of chondroitin sulfates at sites of epithelial-mesenchymal interaction: spatio-temporal patterning identified with anti-chondroitin sulfate monoclonal antibodies, Int. J. Dev. Neurosci. 14(3), 233–248.Google Scholar
  293. Stankiewicz, B.A., Mastalerz, M., Hof, C.H.J., Bierstedt, A., Flannery, M.B., Briggs, D.E.G., Evershed, R.P. 1998. Biodegradation of the chitin-protein complex in crustacean cuticle, Org. Geochem. 28(1–2), 67–76.Google Scholar
  294. St. Pierre, T., Chiellini, E. 1986. Biodegradability of synthetic polymers used for medical and pharmaceutical applications: Part I-Principles of hydrolysis, J. Bioact. Compatible Polym. 1, 467–497.Google Scholar
  295. Sung, H.W., Huang, D.M., Chang, W.H., Huang, L.L., Tsai, C.C., Liang, I.L. 1999. Gelatinderived bioadhesives for closing skin wounds: an in vivo study, J. Biomater. Sci., Polym. Ed. 10(7), 751–771.Google Scholar
  296. Szycher, M. 1991. Biostability of polyurethane elastomers: a critical review, in: Blood Compatible Materials and Devices (C.P. Sharma and M. Szycher, eds.), pp. 33–85, Technomic Publ., Lancaster, PA.Google Scholar
  297. Szycher, M., Lee, S.J. 1992. Modern wound dressings: a systematic approach to wound healing, J. Biomater. Appl. 7(2), 142–213.Google Scholar
  298. Tabata, Y., Ikada, Y. 1999. Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities, Biomaterials 20(22), 2169–2175.CrossRefGoogle Scholar
  299. Tabata, Y., Matsui, Y., Ikada, Y. 1998. Growth factor release from amylopectin hydrogel based on copper coordination, J. Controlled Release 56(1–3), 135–148.Google Scholar
  300. Takahara, A., Coury, A.J., Hergenrother, R.W., Cooper, S.L. 1991a. Effect of soft segment chemistry on the biostability of segmented polyurethanes. I. In vitro oxidation, J. Biomed. Mater. Res. 25, 341–356.Google Scholar
  301. Takahara, A., Hergenrother, R.W., Coury, A.J., Cooper, S.L. 1991b. Effect of soft segment chemistry on the biostability of segmented polyurethanes. II. In vitro hydrolytic degradation and lipid sorption, J. Biomed. Mater. Res. 26, 801–818.Google Scholar
  302. Test, S., Weiss, S. 1986. The generation of utilization of chlorinated oxidants by human neutrophils, Adv. Free Radical Biol. Med. 2, 91–116.CrossRefGoogle Scholar
  303. Timmins, M.R., Gilmore, D.F., Fuller, R.C., Lenz, R.W. 1993. Bacterial polyesters and their biodegradation, in: Biodegradable Polymers and Packaging (C. Ching, D. Kaplan, E. Thomas, eds.), pp. 119–130, Technomic Publ. Co., Lancaster, PA.Google Scholar
  304. Tokiwa, Y., Suzuki, T. 1977. Hydrolysis of polyesters by lipases, Nature 270, 76–78.CrossRefGoogle Scholar
  305. Tomihata, K., Ikada, Y. 1997. Preparation of cross-linked hyaluronic acid films of low water content, Biomaterials 18(3), 189–195.CrossRefGoogle Scholar
  306. Tomita, N., Tamai, S., Morihara, T., Ikeuchi, K., Ikada, Y. 1993. Handling characteristics of braided suture materials for tight tying, J. Appl. Biomater. 4(1), 61–65.CrossRefGoogle Scholar
  307. Tormala, P., Vasenius, J., Vainionpaa, S., Laiho, J., Pohjonen, T., Rokkanen, P. 1991. Ultra-high-strength absorbable self-reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures: in vitro and in vivo study, J. Biomed. Mater. Res. 25, 1–22.Google Scholar
  308. Treib, J., Baron, J.F., Grauer, M.T., Strauss, R.G. 1999. An international view of hydroxyethyl starches, Intensive Care Med. 25(3), 258–268.CrossRefGoogle Scholar
  309. Trimbos, J.B., Booster, M., Peters, A.A. 1991. Mechanical knot performance of a new generation polydioxanon suture (PDS-2), Acta Obstet. Gynecol. Scand. 70(2), 157–159.Google Scholar
  310. Tseng, Y., Tabata, Y., Hyon, S., Ikada, Y. 1990. In vitro toxicity of 2-cyanoacrylate polymers by cell culture method, J. Biomed. Mater. Res. 24, 1355–1367.Google Scholar
  311. Tunc, D.C. 1995. Orientruded polylactide based body-absorbable osteosynthesis devices: a short review, J. Biomater. Sci. Polym. Ed. 7(4), 375–380.MathSciNetGoogle Scholar
  312. Ulrich, S., Kuntz, G., Anita, R. 1992. Haemostyptic preparations on the basis of collagen alone and as fixed combination with fibrin glue, Clin. Mater. 9(3), 169–177.Google Scholar
  313. Vainionpaa, S., Rokkanen, P., Tormala, P. 1989. Surgical applications of biodegradable polymers in human tissue, Prog. Polym. Sci. 14, 679–716.CrossRefGoogle Scholar
  314. van Blitterswijk, C.A., Bakker, D., Leenders, H., Brink, J., Hesseling, S.C., Bovell, Y.P., Radder, A.M., Sakkers, R.J.B., Gaillard, M.L., Heinze, P.H., Beumer, G.J. 1992. Interfacial reactions leading to bone-bonding with PEO-PBT copolymers (Polyactive®), in: Bone Bonding Materials (P. Ducheyne, T. Kokubo, C.A. van Blitterswijk, eds.), pp. 13–30, Reed Healthcare Communications, Leiderdorp.Google Scholar
  315. van der Elst, M., Klein, C.P.A.T., Patka, P., Haarman, H.J.T.M., 2000. Biodegradable fracture fixation devices, in: Biomaterials and Bioengineering Handbook (D.L. Wise, ed.), Ch. 22, pp. 509–524, Marcel Dekker, New York.Google Scholar
  316. van Dorp, A.G., Verhoeven, M.C., Koerten, H.K., van der Nat van der Meij, T.H., van Blitterswijk, C.A., Ponec, M. 1998. Dermal regeneration in full-thickness wounds in Yucatan miniature pigs using a biodegradable copolymer, Wound Repair Regen. 6(6), 556–568.Google Scholar
  317. van Dorp, A.G., Verhoeven, M.C., Koerten, H.K., van Blitterswijk, C.A., Ponec, M. 1999. Bilayered biodegradable poly(ethylene glycol)/poly(butylene terephthalate) copolymer (Polyactive) as substrate for human fibroblasts and keratinocytes, J. Biomed. Mater. Res. 47(3), 292–300.Google Scholar
  318. Vandorpe, J., Schacht, E., Dunn, E., Hawley, A., Stolnik, S., Davis, S.S., Garnett, M.C., Davies, M.C., Illum, L. 1997a. Long circulating biodegradable poly(phosphazene) nanoparticle surface modified with poly(phosphazene)-poly(ethylene oxide) copolymer, Biomaterials 18(17) 1147–1152.CrossRefGoogle Scholar
  319. Vandorpe, J., Schacht, E., Dejardin, S., Lemmouchi, Y. 1997b. Biodegradable polyphosphazenes for biomedical applications, in: Handbook of Biodegradable Polymers (A.J. Domb, J. Kost, D.M. Wiseman, eds.), Ch. 9, pp. 161–182, Harwood Academic Publisher, Singapore.Google Scholar
  320. Varum, K.M., Myhr, M.M., Hjerde, R.J.N., Smidsrud, O. 1997. In vitro degradation rates of partially N-acetylated chitosans in human serum, Carbohydr. Res. 299(1–2), 99–101.Google Scholar
  321. Veis, A. 1983. Characterization of soluble collagens by physical techniques, in: Methods in Enzymology (L.W. Cunningham, D.F. Fredericksen, eds.), pp. 186–217, Academic Press, London.Google Scholar
  322. Verheyen, C.C.P.M., de Wijn, J.R., van Blitterswijk, C.A., de Groot, K. 1992. Evaluation of hydroxylapatite/poly-(L-lactide) composites: Mechanical behaviour, J. Biomed. Mater. Res. 26, 1277–1296.CrossRefGoogle Scholar
  323. Vert, M. 1989. Bioresorbable polymers for temporary therapeutic applications, Angew. Makromol. Chem. 166/167, 155–168.Google Scholar
  324. Vert, M., Guerin, P. 1991. Biodegradable aliphatic polyesters of the poly(hydroxy acid)-type for temporary therapeutic applications, in: Biomaterial Degradation: Fundamental Aspects and Related Clinical Phenomena (M.A. Barbosa, ed.), pp. 35–51, Elsevier, Amsterdam.Google Scholar
  325. Vervoort, L., Rombaut, P., Van den Mooter, G., Augustijns, P., Kinget, R. 1998. Insulin hydrogels. II. In vitro degradation studies, Int. J. Pharm. 172(1–2), 137–145.Google Scholar
  326. Vinard, E., Eloy, R., Descotes, J., Brudon, J. R., Guidicelli, H., Magne, J. L., Patra, P., Berruet, R., Huc, A., Chauchard, J. 1988, Stability of performances of vascular prostheses retrospective study of 22 cases of human implanted prostheses, J. Biomed. Mater. Res. 22, 633–648.CrossRefGoogle Scholar
  327. Vinard, E., Eloy, R., Descotes, J., Brudon, J.R., Guidicelli, H., Patra, P., Streichenberger, R., David, M. 1991. Human vascular graft failure and frequency of infection, J. Biomed. Mater. Res 25, 499–513.CrossRefGoogle Scholar
  328. von Oepen, R., Michaeli, W. 1992. Injection moulding of biodegradable implants, Clin. Mater. 10, 21–28.Google Scholar
  329. Wang, M.Y., Levy, M.L., Mittler, M.A., Liu, C.Y., Johnston, S., McComb, J.G. 1999. A prospective analysis of the use of octyl acrylate tissue adhesive for wound closure in pediatric neurosurgery, Pediatr. Neurosurg. 30(4), 186–188.CrossRefGoogle Scholar
  330. Wehrenberg, R.H. 1981. Polylactic acid polymers: strong, degradable thermoplastics, Mater. Eng. 94(3), 63–66.Google Scholar
  331. Weigel, P.H., Fuller, G.M., LeBoeuf, R.D. 1986. A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing, J. Theor. Biol. 119, 219–234.Google Scholar
  332. Wierik, G.H., Eissens, A.C., Bergsma, J., Arends-Scholte, A.W., Bolhuis, G.K. 1997. A new generation starch product as excipient in pharmaceutical tablets. III. Parameters affecting controlled drug release from tablets based on high surface area retrograded pregelatinized potato starch, Int. J. Pharm. 157(2), 181–187.Google Scholar
  333. Williams, D.F. 1981. Enzymatic hydrolysis of polylactic acid, Eng. Med. 10, 5–7.Google Scholar
  334. Williams, D.F. 1984. The biodegradation of surgical polymers, in: Polyurethanes in Biomedical Engineering (H. Planck, G. Egbers, I. Sirè, eds.), pp. 93–102, Elsevier, Amsterdam.Google Scholar
  335. Williams, D.F. 1990a. Biodegradation of medical polymers, in: Concise Encyclopedia of Medical and Dental Materials (D.F. Williams, ed.), pp. 69–74, Pergamon Press, Oxford.Google Scholar
  336. Williams, D.F. 1990b. The role of active species within tissue in degradation processes, in: Degradable Materials. Perspectives, Issues and Opportunities (S.A. Barenberg, J.L. Brash, R. Narayan, A.E. Redpath, eds.), pp. 323–355, CRC Press, Boca Raton.Google Scholar
  337. Williams, D.F. 1991. Objectivity in the evaluation of biological safety of medical devices and biomaterials, Med. Dev. Technol, 2(1), 44–48.Google Scholar
  338. Williams, D.F., Chu, C.C., Dwyer, J. 1984. Effects of enzymes and gamma irradiation on the tensile strength and morphology of poly(p-dioxanone), J. Appl. Polym. Sci. 29, 1865–1877.CrossRefGoogle Scholar
  339. Williams, J.C.L., Watson, S.J., Boydell, S. 1995. Properties, in Nylon Plastics Handbook (M.I. Kohan, ed.), pp. 293–358, Hanser Publ., Munich.Google Scholar
  340. Zaikov, G.E. 1985. Quantitative aspects of polymer degradation in the living body, JMS-Rev. Macromol. Chem. Phys. C25(4), 551–597.MathSciNetGoogle Scholar
  341. Zellin G., Gritli-Linde, A., Linde, A. 1995. Healing of mandibular defects with different biodegradable and non-biodegradable membranes: an experimental study in rats, Biomaterials 16, 601–609.CrossRefGoogle Scholar
  342. Zhang, X., Wyss, U.P., Pichora, D., Goosen, M.F.A. 1993. Biodegradable polymers for orthopedic applications: synthesis and processability of poly(L-lactide) and poly-lactide-co-ε-caprolactone), Pure Appl. Chem. A30, 933–947.Google Scholar
  343. Zhang, X., Wyss, U.P., Pichora, D., Goosen, M.F.A. 1994. An investigation of poly(lactic acid) degradation, J. Bioact. Compat. Mater. 9(1), 80–100.Google Scholar
  344. Zhang, Y.O., Zhu, J., Gu, R.A. 1998. Improved biosensor for glucose based on glucose oxidase-immobilized silk fibroin membrane, Appl. Biochem. Biotechnol. 75(2–3), 215–233.Google Scholar
  345. Zhao, Q., Marchant, R.E., Anderson, J.M., Hiltner, A. 1987. Long term biodegradation in vitro of poly(ether urethane urea), a mechanical property study, Polymer 28, 2040–2046.CrossRefGoogle Scholar
  346. Zhu, K.J., Xiangzhou, L., Shilin, Y. 1990. Preparation, characterization and properties of polylactide(PLA)-poly(ethylene glycol) (PEG) copolymers: a potential drug carrier, J. Appl. Polym. Sci. 39, 1–9.CrossRefGoogle Scholar
  347. Zizokis, J.P. 1984. Chitin, Chitosan and Related Enzymes, pp. 75–85, Academic Press, Orlando.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Luca Fambri
    • 1
  • Claudio Migliaresi
    • 1
  • Kemal Kesenci
    • 2
  • Erhan Piskin
    • 2
  1. 1.Department of Materials EngineeringUniversity of TrentoTrentoItaly
  2. 2.Chemical Engineering Department and Bioengineering DivisionHacettepe UniversityBeytepeTurkey

Personalised recommendations