Advertisement

Tissue Engineering

  • Giovanni Abatangelo
  • Paola Brun
  • Marco Radice
  • Roberta Cortivo
  • Marcus K. H. Auth
Chapter

Conclusions

Since cartilage has no regenerative properties, tissue engineered replacements which provide to the defect site isolated cells, alone or in conjunction with a structural scaffold of biodegradable biomaterials, allow for long-term integrated repair of the tissue and are thus indicated for the surgical treatment of arthritis, trauma, or congenital abnormalities. Chon-drocytes and mesenchymal stem cells show great potential in the development of cartilage-like tissue both in vitro and in vivo. Bioengineered in vivo tissue transplantation holds advantages over cell therapy since the presence of an ECM matrix may not only provide a stable support for cells, but also ensures that the transplanted cells remain in the treated site and act as a source for growth factors which stimulate correct cell differentiation.

Keywords

Tissue Engineering Hyaluronic Acid Tissue Engineer Nonparenchymal Cell Biliary Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abatangelo, G., Brun, P., Cortivo, R. 1994. Hyaluronan (Hyaluronic acid): an overview, in: Novel Biomaterials Based on Hyaluronic Acid and Its Derivatives (D.F. Williams, ed.), pp. 8–18, Proceedings of a Workshop Held at the Annual Meeting of the European Society for Biomaterials, Pisa, Italy.Google Scholar
  2. Adams, J.C., Watt, F.M. 1989. Fibronectin inhibits the terminal differentiation of human keratinocytes, Nature 340, 307–309.CrossRefGoogle Scholar
  3. Adams, J.C., Watt, F.M. 1993. Regulation of the development and differentiation by extracellular matrix, Development 117, 1183–1198.Google Scholar
  4. Aigner, J., Tegeler, J., Hutzler, P., Campoccia, D., Pavesio, A., Hammer, C., Kastenbauer, E., Naumann, A. 1998. Cartilage tissue engineering with novel nonwoven structured bio-material based on hyaluronic acid benzyl ester, J. Biomed. Mater. Res. 42, 172–181.CrossRefGoogle Scholar
  5. Andreassi, L., Casini, L., Trabucchi, E., Diamantini, S., Rastrelli, A., Donati, L., Tenchini, M.L., Malcovati, M. 1991. Human keratinocytes cultured on membranes composed of benzyl ester of hyaluronic acid suitable for grafting, Wounds 3, 116–126.Google Scholar
  6. Andreassi, L., Pianigiani, E., Andreassi, A., Taddeucci, P., Biagioli, M. 1998. A new model of epidermal culture for the surgical treatment of vitiligo, Int. J. Dermatol. 37, 595–598.CrossRefGoogle Scholar
  7. Angele, P., Nerlich, A., Kujat, R., Faltermeier, H., Moller, H.D., Weigel, B., Nerlich, M. 1998. Chondrocyte differentiation in fibrin-coating on polytetrafluorethylene membranes, in: Biological Matrices and Tissue Regeneration (G.B. Stark, R. Horch, E. Tanczos, eds.), pp. 173–177, Springer-Verlag Berlin, Heidelberg.Google Scholar
  8. Argraves, W.S., Tran, H., Burgess, W.H., Dickerson, K. 1990. Fibulin is an extracellular matrix and plasma glycoprotein with repeated domain structure, J. Cell Biol. 111, 3155–3164.CrossRefGoogle Scholar
  9. Arias, I.M., Boyer, J.L., Fausto, N., Jakoby, W.B., Schachter, D.A., Shafritz, D.A. 1994. The Liver: Biology and Pathobiology, 3rd edn., Raven Press, New York.Google Scholar
  10. Ashammakhi, N., Rokkanen, P. 1997. Absorbable polyglycolide devices in trauma and bone surgery, Biomaterials 18, 3–9.CrossRefGoogle Scholar
  11. Auger, F.A., Lopez Valle, C.A., Guignard, R., Thremblay, N., Noel, B., Goulet, F., Germain, L. 1995. Skin equivalent produced with human collagen, In Vitro Cell. Dev. Biol. Animal 31, 432–439.CrossRefGoogle Scholar
  12. Auth, M.K.H., Joplin, R., Fabris, L., Keogh, A., Gallacher, R.E, Neuberger, J.M., McMaster, P., Strain, A.J. 1995a. Structural and functional studies of human hepatocytes and biliary epithelial cells cocultured in collagen gels, Hepatology 22(4), 215–A.Google Scholar
  13. Auth, M.K.H., Joplin, R., Wallace, L., Keogh, A., Wilton, J.A., Strain, A.J. 1995b. Coculture of human biliary epithelial cells and hepatocytes in collagen gels, FASEB J. 9(Pt II), A–852.Google Scholar
  14. Auth, M.K.H., Sadamoto, T., Okamoto, M., Joplin, R., Neuberger, J.M., Strain, A.J. 1996. Proliferation and formation of polarised luminal ducts by human biliary epithelial cells in vitro, Hepatology 24(4), II, 129–A.Google Scholar
  15. Baragi, V.M., Renkievicz, R.R., Jordan, H., Bonadio, J., Hartman, J.W, Roessler, B.J. 1995. Transplantation of transduced chondrocytes protects articular cartilage from interleukin-1 induced extracellular matrix degradation, J. Clin. Invest. 96, 2454–2460.CrossRefGoogle Scholar
  16. Barbucci, R., Magnani, A., Da Costa, M.L., Bauser, H., Hellwig, G., Martuscelli, E., Cimmino, S. 1993. Physico-chemical surface characterization of hyaluronic acid derivatives as a new class of biomaterials, J. Biomater. Sci. Polym. Ed. 4(3), 245–273.CrossRefGoogle Scholar
  17. Barry, F.P., and Murphy, J.M. 2000. Chondrogenic differentiation of mesenchymal stem cells on matrices of hyaluronan derivatives, in: New Frontiers in Medical Sciences: Redefining Hyaluronan (G. Abatangelo and P.H. Weigel, (eds.) pp. 247–253, Elsevier Science.Google Scholar
  18. Benedetti, L., Cortivo, R., Berti, T., Pea, F., Mazzo, M., Moras, M., Abatangelo, G. 1993. Biocompatibility and biodegradation of different hyaluronan derivatives (Hyaff) implanted in rats, Biomaterials 14(15), 1154–1160.CrossRefGoogle Scholar
  19. Benya, P.D., Padilla, S.R., Nimni, M.E. 1977. The progeny of rabbit articular chondrocytes synthesize collagen type I and type III and type I trimer, but not type II: verifications by cyanogen bromide peptide analysis, Biochemistry 16, 865–872.CrossRefGoogle Scholar
  20. Benya, P.D., Padilla, S.R. 1986. Modulation of the rabbit chondrocyte by retinoic acid terminates type II collagen synthesis without including type I collagen: the modulated phenotype differs from that produced by subculture, Dev. Biol. 118(1): 296–305.CrossRefGoogle Scholar
  21. Bernfield, M., Sanderson, R.D. 1990. Syndecan, a developmentally regulated cell surface proteoglycan that binds extracellular matrix and growth factors. Phil. Trans. R. Soc. Lond., Ser. B 327, 171–186.CrossRefGoogle Scholar
  22. Billingham, R.E., Reynolds, J. 1952. Transplantation studies on sheets of pure epidermal epithelium and on epidermal cell suspensions. Br. J. Plast. Surg. 5, 25–36.CrossRefGoogle Scholar
  23. Block, G., Locker, J., Bowen, W.C., Peterson B.E., Katyal, S., Strom, S.C., Riley, T., Howard, T.A., Michalopoulos, G.K. 1996. Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and in a chemically defined (HGM) medium, J. Cell Biol. 132(6), 1133–1149.CrossRefGoogle Scholar
  24. Boyce, S.T., Christianson, D., Hansbrough, J.F.1988. Structure of a collagen-GAG skin substitute optimized for cultured human epidermal keratinocytes, J. Biomed. Mater. Res., 22, 939–957.Google Scholar
  25. Breitbart, A.S., Grande, D.A., Kessler, R., Ryaby, J.T., Fitzsimmons, R.J., Grant, R.T. 1998. Tissue engineered bone repair of calvarial defects using cultured periosteal cells, Plast. Reconstr. Surg. 101, 567–574.CrossRefGoogle Scholar
  26. Brekke, J.H. 1996. A rationale for delivery of osteoinductive proteins, Tissue Eng. 2, 97–114.CrossRefGoogle Scholar
  27. Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., Peterson, L. 1994a. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation, N. Engl. J. Med. 331, 889–895.CrossRefGoogle Scholar
  28. Brittberg, M., Faxen, E., Peterson, L. 1994b. Carbon fiber scaffolds in the treatment of early knee osteoarthritis, a prospective 4-year follow-up of 37 patients, Clin. Orthop. 307, 155–164.Google Scholar
  29. Brun, P., Abatangelo, G., Radice, M., Zacchi, V., Guidolin, D., Daga-Gordini, D., Cortivo, R. 2000. Chondrocyte aggregation and reorganization into three-dimensional scaffolds, J. Biomed. Mater. Res. 46, 337–346.CrossRefGoogle Scholar
  30. Burgess, E.A., Hollinger, J.O. 1998. Options for tissue engineering bone, in: Frontiers in Tissue Engineering (C.W. Patrick, Jr., A.G. Mikos, L.V. McIntire, eds.), pp. 383–399, Pergamon, New York.CrossRefGoogle Scholar
  31. Butnariu-Ephrat, M., Robinson, D., Mendes, D.G., Halperin, N., Nevo, Z. 1996. Resurfacing of goat articular cartilage by chondrocytes derived from bone marrow, Clin. Orthop. Relat. Res. 330, 234–243.CrossRefGoogle Scholar
  32. Buttermann, G.R., Glazer, P.A., Bradford, D.S. 1996. The use of bone allografts in the spine, Clin. Orthop. Relat. Res. 324, 75–85.CrossRefGoogle Scholar
  33. Campoccia, D., Doherty, P., Radice, M., Brun, P., Abatangelo, G., Williams, D.F. 1998. Semisynthetic resorbable materials from hyaluronan derivatization, Biomaterials 19, 2101–2127.CrossRefGoogle Scholar
  34. Caplan, A.I. 1991. Mesenchymal stem cells, J. Orthop. Res. 9(5), 641–650.CrossRefGoogle Scholar
  35. Caplan, A.I. 1994. The mesengenic process, Bone Rep. Reg. 21, 429–435.Google Scholar
  36. Caplan, A.I., Elyaderani, M., Mochizuki, Y., Wakitani, S., Goldberg, V.M. 1997. Principles of cartilage repair and regeneration, Clin. Orthop. Relat. Res. 342, 254–269.CrossRefGoogle Scholar
  37. Chu, C.R., Coutts, R.D., Yoshioka, M., Harwood, F.L., Monsov, A.Z., Amiel, D. 1995. Articular cartilage repair using allogenic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study, J. Biomed. Mater. Res. 29, 1147–1154.CrossRefGoogle Scholar
  38. Clark, E.A., Brugge, J.S. 1995. Integrins and signal transduction pathways: the road taken, Science 268, 233–239.CrossRefGoogle Scholar
  39. Clement, B., Laurent, M., Guguen-Guillouzo, C., Lebeau, G., Guillouzo, A. 1988a. Types I and IV procollagen gene expression in cultured rat hepatocytes, Collagen Relat. Res. 8, 349–359.Google Scholar
  40. Clement, B., Rescan, P.Y., Baffet, G., Loreal, O., Lehry, D., Campion, J.P., Guillouzo, A. 1988b. Hepatocytes may produce laminin in fibrotic liver and in primary culture, Hepatology 8(4), 794–803.CrossRefGoogle Scholar
  41. Clement, B., Guguen-Guillouzo, C., Campion, J.P., Launois, B., Nicol, M. 1994. Long-term co-cultures of adult human hepatocytes with rat liver epithelial cells: modulation of albumin secretion and accumulation of extracellular material, Hepatology 4(3), 373–380.CrossRefGoogle Scholar
  42. Cook, S.D., Dalton, J.E., Tan, E.H., Whitecloud, T.S., Rueger, D.C. 1994. In vivo evaluation of recombinant human osteogenic protein (rhOP-1) implants as a bone graft substitute for spinal fusions, Spine 19, 1655–1663.CrossRefGoogle Scholar
  43. Corlu, A., Kneip, B., Lhadi, C., Leray, G., Glaise, D., Baffet, G., Bourel, D., Guguen-Guillouzo, C. 1991. A plasma membrane protein is involved in cell contact-mediated regulation of tissue-specific genes in adult hepatocytes, J. Cell Biol. 225(2), 505–515.CrossRefGoogle Scholar
  44. Cortivo, R., De Galateo, A., Castellani, I., Brun, P., Giro, M.G., Abatangelo, G. 1990. Hyaluronic acid promotes chick embryo fibroblast and chondroblast expression, Cell Biol. Int. Rep. 14, 111–122.CrossRefGoogle Scholar
  45. Cortivo, R., Brun, P., Rastrelli, A., Abatangelo, G. 1991. In vitro studies on biocompatibility of hyaluronic acid esters, Biomaterials 12, 727–730.CrossRefGoogle Scholar
  46. Damsky, C., Sutherland, A., Fisher, S. 1993. Extracellular matrix 5: Adhesive interactions in early mammalian embryogenesis, implantation and placentation, FASEB J. 7, 1320–1329.Google Scholar
  47. Damsky, C.H., Werb, Z. 1992. Signal transduction by integrin receptors for extracellular matrix: cooperative processing of extracellular information, Curr. Opin. Cell Biol. 4, 772–781.CrossRefGoogle Scholar
  48. Dichek, D.A., Anderson, J., Kelly, A.B., Hanson, S.R., Harker, L.A. 1996. Enhanced in vivo antithrombotic effects of endothelial cells expressing recombinant plasminogen activators transduced with retroviral vectors, Circulation 93, 301–309.Google Scholar
  49. Diener, B., Beer, N., Durk, H., Traiser, M., Utesch, D., Wieser, R.J., Oesch, F. 1994. Gap junctional intercellular communication of cultured rat-liver parenchymal-cells is stabilized by epithelial-cells and their isolated plasma-membranes, Experientia 50(2), 124–126.CrossRefGoogle Scholar
  50. Dixon, K.P., Murphy, R.W., Southerland, S.S., Young, H.E., Lucas, P.A. 1996. Recombinant human bone morphogenetic proteins-2 and-4 induce several mesenchymal phenotypes in culture, Wound Rep. Reg. 4, 374–380.CrossRefGoogle Scholar
  51. Drumheller, P.D., Hubbell, J.A. 1995. Surface immobilization of adhesion ligands for investigations for cell-substrate interactions, in: Biomedical Engineering Handbook (J.D. Bronzino, ed.), pp. 1583–1596, CRC Press, Boca Raton.Google Scholar
  52. Dunn, J.C., Yarmush, M.L., Koebe, H.G., Tompkins, R.G. 1989. Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration, FASEB J. 3, 174–177.Google Scholar
  53. Dunn, J.C., Tompkins, R.G., Yarmush, M.L. 1992. Hepatocytes in collagen sandwich: evidence for transcriptional and translational regulation, J. Cell Biol. 116(4), 1043–1053.CrossRefGoogle Scholar
  54. Eming, S.A., Lee, J., Snow, R.G., Tompkins, R.G., Yarmush, M.L., Morgan, J.R. 1995. Genetically modified human epidermis over-expressing PDGF-A directs the development of a cellular and vascular connective tissue stroma when transplanted to athymic mice, J. Invest. Dermatol. 105, 756–763.CrossRefGoogle Scholar
  55. Eming, S.A., Snow, R.G., Yarmush, M.L., Morgan, J.R. 1996. Targeted expression of IGF-1 to human keratinocytes: modification of autocrine control of keratinocyte proliferation, J. Invest. Dermatol. 107, 113–120.CrossRefGoogle Scholar
  56. Engel, J. 1989. EGF-like domains in extracellular matrix proteins: localised signals for growth and differentiation, FEBS Lett. 251, 1–7.CrossRefGoogle Scholar
  57. Ezzell, R.M., Toner, M., Hendricks, K., Dunn, J.C., Tompkins, R.G., Yarmush, M.L.1993. Effect of collagen gel configuration on the cytoskeleton in cultured rat hepatocytes, Exp. Cell Res. 208, 442–452.Google Scholar
  58. Falanga, V., Margolis, D., Alvarez, O., Auletta, M., Maggiacomo, F., Altman, M., Jensen, J., Sabolinsky, M., Hardin-Young, J. 1998. Rapid healing of venous ulcers and lack of clinical rejection with allogeneic cultured human skin equivalent, Arch. Dermatol. 134, 293–300.CrossRefGoogle Scholar
  59. Ferns, M., Hoch, W., Campanelli, J. T, Rupp, F., Hall, Z.W., Scheller, R.H. 1992. RNA splicing regulates agrin-mediated acetylcholine receptor clustering activity on cultured myotubes, Neuron 8, 1079–1086.CrossRefGoogle Scholar
  60. Freed, L.E., Marquuis, L.J., Nohria, A., Emmanual, J., Mikos, A.G., Langer, R. 1993. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers, J. Biomed. Mater. Res. 27, 11–23.CrossRefGoogle Scholar
  61. Freed, L.E., Grande, D.A., Lingbin, Z., Emmanual, J., Marquis, J.C., Langer, R. 1994. Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds, J. Biomed. Mater. Res. 28, 891–899.CrossRefGoogle Scholar
  62. Fujisato, T., Sajiki, T., Liu, Q., Ikada, Y. 1996. Effect of basic fibroblast growth factor on cartilage regeneration in chondrocyte-seeded collagen sponge scaffold, Biomaterials 17, 155–162.CrossRefGoogle Scholar
  63. Fusenig, N.E. 1994. Epithelial-mesenchymal interactions regulate keratinocyte growth and differentiation in vitro, in: The Keratinocyte Handbook (I. Leigh, B. Lane, F.M. Watt, eds.), pp. 71–94, Cambridge University Press, Cambridge.Google Scholar
  64. Galassi, G., Brun, P., Radice, M., Cortivo, R., Zanon, G.F., Genovese, P., Abatangelo, G. 2000. In vitro reconstructed dermis implanted in human wounds: degradation studies of the HA-based supporting scaffold, Biomaterials 21, 2183–2191.CrossRefGoogle Scholar
  65. Gallico, G.G., III, O’connor N.E., Compton, C.C., Kehinde, O., Green, H. 1984. Permanent coverage of large burn wounds with autologous cultured human epithelium, New Engl. J. Med. 311, 448–451.CrossRefGoogle Scholar
  66. Gallico, G.G., III, Compton, C.C., Remensnyder, J.P., Kehinde, O., Green, H. N.E., 1989. Cultured epithelial autografts for giant congenital nevi, Plast. Reconstr. Surg. 84 1–9.CrossRefGoogle Scholar
  67. Gerrad, A.J., Hudson, D.J., Brownlee, G.G., Watt, F.M. 1993. Gene therapy for haemophilia B using primary human keratinocytes, Nature 3, 180–183.Google Scholar
  68. Giusti, P., Callegaro, L. 1994. World patent Application No. WO 94/ 01468.Google Scholar
  69. Gomez-Lechon, M.J., Castelli, J., Guillen, I., Nakamura, T., Fabra, R., Trullenque, R. 1995. Effect of hepatocyte growth factor on the growth and metabolsim of human hepatocytes in primary culture, Hepatology 21, 1248–1254.Google Scholar
  70. Gooch, K.J., Blunk, T., Vunjak-Novakovic, G., Langer, R., Freed, L., Tennant, C.J. 1998. Mechanical forces and growth factors utilized in tissue engineering, in: Frontiers in Tissue Engineering (C.W. Patrick, Jr., A.G. Mikos, L.V. McIntire, eds.), pp. 61–82, Pergamon, New York.CrossRefGoogle Scholar
  71. Goulet, F., Normand, C., Morin, O. 1988. Cellular interactions promote tissue-specific function, biomatrix deposition and junctional communication of primary cultured hepatocytes, Hepatology 8(5), 1010–1018.CrossRefGoogle Scholar
  72. Green, H. 1977. Terminal differentiation of cultured epidermis cells,Cell 11, 405–416.CrossRefGoogle Scholar
  73. Gressner, A.M., Lahme, B., Brenzel, A. 1995. Molecular dissection of the mitogenic effect of hepatocytes on cultured hepato-stellate cells, Hepatology 22, 1507–1518.CrossRefGoogle Scholar
  74. Grigoriadis, A.E., Heersche, J.N.M., Aubin, J.E. 1988. Differentiation of muscle, fat, cartilage and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone, J. Cell Biol. 106, 2139–2151.CrossRefGoogle Scholar
  75. Guguen-Guillouzo, C, Clement, B., Baffet, G., Beaumont, C., Morel-Chany, E., Glaise, D., Guillouzo, A. 1983. Maintenance and reversibility of active albumin secretion by adult rat hepatocytes co-cultured with another liver epithelial cell type, Exp. Cell Res. 143, 47–54.CrossRefGoogle Scholar
  76. Guguen-Guillouzo, C., Clement, B., Lescoat, G., Glaise, D., Guillouzo, A. 1984. Modulation of human fetal hepatocytes survival and differentiation by interactions with a rat liver epithelial cell line, Dev. Biol. 105, 211–230.CrossRefGoogle Scholar
  77. Guillouzo, A., Delers, F., Clement, B., Bernard, N., Engler, R. 1984. Long term production of acute-phase proteins by adult rat hepatocytes co-cultured with another liver cell type in serum-free medium, Biochem. Biophys. Res. Commun. 120(2), 311–317.CrossRefGoogle Scholar
  78. Gumbiner, B.M. 1996. Cell adhesion: The molecular basis of tissue architecture and morphogenesis, Cell 84, 345–357.CrossRefGoogle Scholar
  79. Haisch, A., Rathert, T., Schultz, O., Janke, V., Burmester, G.R., Sittinger, M. 1998. In vitro engineered cartilage for reconstructive surgery, using biocompatible, resorbable fibrin glue/polymer structures, in: Frontiers of Tissue Engineering (C.W. Patrick, A.G. Mikos, L.V. McIntire, eds.), pp. 179–187, Pergamon, New York.Google Scholar
  80. Hansbrough, J.F., Morgan, J., Greenleaf, G. 1993. Advances in wound coverage using cultured cell technology, Wounds 5, 174–194.Google Scholar
  81. Hardingham, T.E., Forsang, A.J. 1992. Proteoglycans: many forms and functions. FASEB J. 6, 861–870.Google Scholar
  82. Harris, P.A. 1998. Pre-confluent keratinocyte grafting: the future for cultured skin replacements? Burns 24, 591–593.CrossRefGoogle Scholar
  83. Harris, P.A., di Francesco, F., Barisoni, D., Leigh, I.M., Navsaria, H.A. 1999. Use of hyaluronic acid and cultured autologous keratinocytes and fibroblasts in extensive burns, Lancet 353, 35–36.CrossRefGoogle Scholar
  84. Hemler, M.E. 1990. VLA proteins in the integrin family: structures, functions and their role on leukocytes, Annu. Rev. Immunol. 8, 365–400.CrossRefGoogle Scholar
  85. Hemmen, B., Archer, C.W., Bentley, G. 1991. Repair of articular cartilage defects by carbon fiber plugs loaded with chondrocytes, Trans. Orthop. Res. Soc. 16, 278.Google Scholar
  86. Hollinger, J.O., Brekke, J.B., Gruskin, E., Lee, D. 1996. Role of bone substitutes, Clin. Orthop. Relat. Res. 324, 55–65.CrossRefGoogle Scholar
  87. Horton, W.A., Machado, M.A., Ellard, J., Campbell, D., Puttam, E.A., Aulthause, A.L., Sun, X., Sandell, L.J. 1993. An experimental model of human chondrocyte differentiation, Prog. Clin. Biol. Res. 383B, 533–540.Google Scholar
  88. Hu, M.Y., Cipolle, M., Sielaff, T., Lovdahl, M.J., Mann, H.J., Remmel, R.P., Cerra, F.B. 1995. Effects of hepatocyte growth factor on viability and biotransformation functions of hepatocytes in gel entrapped and monolayer, Crit. Care Med. 23, 1237–1242.CrossRefGoogle Scholar
  89. Hunziker, E.B., Rosenberg, L. 1994. Induction of repair in partial thickness articular lesion by timed release of TGF-β, Trans. Orthop. Res. Soc. 19, 236.Google Scholar
  90. Hynes, R.O. 1992. Integrins: versatility, modulation and signalling in cell adhesion, Cell 69, 11–25.CrossRefGoogle Scholar
  91. Iyoda, K., Miura, T., Nogami, H. 1993. Repair of bone defect with cultured chondrocytes bound to hydroxyapatite, Clin. Orthop. Relat. Res. 288, 287–293.Google Scholar
  92. James, N.H., Molloy, C., Soames, A.R., French, N.J., Roberts, R.A. 1992. An in vitro model of rodent nongenotoxic hepatocarcinogenesis, Exp. Cell Res. 203, 407–419.CrossRefGoogle Scholar
  93. Joplin, R., Hishida, T., Tsubouchi, H., Daikuhara, Y., Ayres, R., Neuberger, J.M., Strain, A.J. 1992. Human biliary epithelial cells proliferate in vitro in response to human hepatocyte growth factor, J. Clin. Invest. 90, 1284–1289.CrossRefGoogle Scholar
  94. Kaiser, H.W., Stark, G.B., Kopp, J., Balcerkiewicz, A., Spilker, G., Kreysel, H.W. 1994. Cultured autologous keratinocytes in fibrin glue suspension, exclusively and combined with STS-allograft (preliminary clinical and histological report on a new technique, Burns 20, 23–29.CrossRefGoogle Scholar
  95. Karin, M. 1992. Signal transduction from cell surface to nucleus in development and disease, FASEB J. 6, 2581–2590.Google Scholar
  96. Kasugai, S., Todescan, R., Jr., Nagata, T., Yao, K.L., Butler, W.T., Sodek, J. 1991. Expression of bone matrix proteins associated with mineralized tissue formation by adult rat bone marrow cells in vitro: inductive effects of dexamethasone on the osteoblastic phenotype, J. Cell Physiol. 147, 111–120.CrossRefGoogle Scholar
  97. Kawamura, S., Wakitani, S., Kimura, T., Maeda, A., Caplan, A.I., Shino, K., Ochi, T. 1998. Articular cartilage repair, Acta Orthop. Scand. 69(1), 56–62.Google Scholar
  98. Kim, W.S., Vacanti, J.P., Cima, L.G., Mooney, D., Upton, J., Puelacher, W.C. 1994. Cartilage engineered in predetermined shapes employing cell transplantation on synthetic biodegradable polymers, Plast. Reconstr. Surg. 94, 233–237.Google Scholar
  99. Klagsbrun, M. 1990. The affinity of FGF for heparin: FGF-heparan sulphate interactions in cells and extracellular matrix, Curr. Opin. Cell Biol. 2, 857–863.CrossRefGoogle Scholar
  100. Knudson, C.B., Knudson, W. 1990. Similar epithelial-stromal interactions in the regulation of hyaluronate production during limb morphogenesis and tumor invasion, Cancer Lett. 52, 113–122.CrossRefGoogle Scholar
  101. Kolettas, E., Buluwela, L., Bayliss, M.T., Muir, H.I. 1995. Expression of cartilage-specific molecules is retained on long term culture of human chondrocytes, J. Cell Sci. 108, 1991–1999.Google Scholar
  102. Lamme, E.N., De Vries, H.J.C., Van Veen, H., Gabbiani, G., Westerhof, W., Middelkoop, E. 1996. Extracellular matrix characterization during healing of full-thickness wounds treated with a collagen/elastin dermal substitute shows improved skin regeneration in pigs, J. Histochem. Cytochem. 44, 1311–1322.Google Scholar
  103. Lazarus, H.M., Haynesworth, S.E., Gerson, S.L., Rosenthal, N.S., Caplan, A.I. 1995. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use, Bone Marrow Transplant. 16, 557–564.Google Scholar
  104. Leigh, I.M. 1994. Keratinocyte autografting, allografting and wound healing, in: The Keratinocyte Handbook (I. Leigh, B. Lane, F.M. Watt, eds.), pp. 503–511, Cambridge University Press, Cambridge.Google Scholar
  105. Leigh, I.M., Watt, F.M. 1994. The culture of human epidermal keratinocytes, in: The Keratinocyte Handbook (I. Leigh, B. Lane, F.M. Watt, eds.), pp. 43–51, Cambridge University Press, Cambridge.Google Scholar
  106. Lescoat, G., Pasdeloup, N., Kneip, B., Guguen-Guillouzo, G. 1987. Modulation of alphafetoprotein, albumin and transferrin gene expression by cellular interactions and dexamethasone in cocultures of fetal rat hepatocytes, Eur. J. Cell Biol. 44(1), 128–134.Google Scholar
  107. Liebergall, M., Young, R.G., Ozawa, H. 1994. The effects of cellular manipulation and in a composite bone graft, in: Bone Formation and Repair (C.T. Brighton, G. Friedlaender, J.M. Lane, eds.), pp. 367–378, American Academy of Orthopaedic Surgeons, Rosemont.Google Scholar
  108. Limat, A., Mauri, D., Hunziker, T. 1996. Successful treatment of chronic leg ulcers with epidermal equivalents generated from cultured autologous outer root sheath cells, J. Invest. Dermatol. 107, 128–135.CrossRefGoogle Scholar
  109. Limova, M., Mauro, T. 1995. Treatment of leg ulcers with cultured epithelial autografts: treatment protocol and five year experience, Wounds 7, 170–180.Google Scholar
  110. Lin, C.Q., Bissell, M.J. 1993. Multi-faceted regulation of cell differentiation by extracellular matrix, FASEB J. 7, 737–743.Google Scholar
  111. Loreal, O., Levavasseur, F., Fromaget, C., Gros, D., Guillouzo, A., Clement, B. 1993. Cooperation of Ito cells and hepatocytes in the deposition of an extracellular matrix in vitro, Am. J. Pathol. 143(2), 538–544.Google Scholar
  112. MacKenzie, I. 1994. Epithelial-mesenchymal interactions in the development and maintenance of epithelial tissues, in: The Keratinocyte Handbook (I. Leigh, B. Lane, F.M. Watt, eds.), pp. 243–257, Cambridge University Press, Cambridge.Google Scholar
  113. Mankin, H.J., Gebhardt, M.C., Jennings, L.C., Springfield, D.S., Tomford, W.W. 1996. Long-term results of allograft replacement in the management of bone tumors, Clin. Orthop. Relat. Res. 324, 86–97.CrossRefGoogle Scholar
  114. Mantalaris, A., Keng, P., Bourne, P., Chang, A.Y., Wu, J.H. 1998. Engineering a human bone marrow model: a case study on ex vivo erythropoiesis, Biotechnol. Prog. 14, 126–133.CrossRefGoogle Scholar
  115. Martin, P. 1997. Wound healing-Aiming for perfect skin regeneration, Science 276, 75–81.CrossRefGoogle Scholar
  116. Maslen, C.L., Corson, G.M., Maddox, B.K., Glanville, R.W., Sakai, L.Y. 1991. Partial sequence of a candidate gene for the Marfan syndrome, Nature 352, 334–337.CrossRefGoogle Scholar
  117. Mayhew, T.A., Williams, G.R., Senica, M.A., Kuniholm, G., du Moulin, G.C. 1998. Validation of a quality assurance program for autologous cultured chondrocyte implantation, Tissue Eng. 4(3), 325–334.CrossRefGoogle Scholar
  118. McPherson, D.T., Morrow, C., Minehan, D.S., Wu, J.G., Hunter, E., Urry, D.W. 1992. Production and purification of a recombinant elastomeric peptide G(VPGVG)19VPGV from Escherichia Coli, Biotech. Prog. 8, 347–352.CrossRefGoogle Scholar
  119. Mesnil, M., Fraslin, J.M., Piccoli, C., Yamasaki, H., Guguen-Guillouzo, C. 1987. Cell contact but not junctional communication (dye coupling) with biliary epithelial cells is required for hepatocytes to maintain differentiated functions, Exp. Cell Res. 173, 524–533.CrossRefGoogle Scholar
  120. Messner, K., Gillquist, J. 1996. Cartilage repair, Acta Orthop. Scand. 67, 523–529.Google Scholar
  121. Michalopoulos, G., Russell, F., Biles, C. 1979. Primary cultures of hepatocytes on human fibroblasts, In Vitro 15(10), 796–806.Google Scholar
  122. Mooney, D., Hansen, L., Vacanti, J., Langer, R., Farmer, S., Ingber, D. 1992. Switching from differentiation to growth in hepatocytes: control by extracellular matrix, J. Cell Physiol. 151, 497–505.CrossRefGoogle Scholar
  123. Morgan, J.R., Yarmush, M.L. 1998. Gene therapy in tissue engineering, in: Frontiers in Tissue Engineering (C. W. Patrick, Jr., A.G. Mikos, L.V. McIntire, eds.), pp. 278–310, Pergamon, New York.CrossRefGoogle Scholar
  124. Morgan, J.R., Barrandon, Y., Green, H., Mulligan, R.C. 1987. Transfer and expression of foreign genes in transplantable human epidermal cells, Science 237, 1476–1479.CrossRefGoogle Scholar
  125. Moriarty, K.P., Crombleholme, T.M., Gallivan, E.K., O’Donnell, C. 1996. Hyaluronic acid-dependent pericellular matrices in fetal fibroblasts: implication for scar-free wound repair, Wound Rep. Reg. 4, 346–352.CrossRefGoogle Scholar
  126. Morin, O., Normand, C. 1986. Long-term maintenance of hepatocyte functional activity in co-culture: requirements for sinusoidal endothelial cells and dexamethasone, J. Cell Physiol. 129, 103–110.CrossRefGoogle Scholar
  127. Mundy, G.R. 1996. Regulation of bone formation by bone morphogenetic proteins and other growth factors, Clin. Orthop. Relat. Res. 323, 24–28.CrossRefGoogle Scholar
  128. Murphy, G.F., Orgill, D.P., Yannas, I.V. 1990. Partial dermal regeneration is induced by biodegradable collagen-glycosaminoglycans graft, Lab. Invest. 63, 305–313.Google Scholar
  129. Musat, A.I., Sattler, C.A., Sattler, G.L., Pitot, H.C. 1993. Reestablishment of cell polarity of rat hepatocytes in primary culture, Hepatology 18, 198–205.CrossRefGoogle Scholar
  130. Myers, S.R., Grady, J., Soranzo, C., Sanders, R., Green, C., Leigh, I.M., Navsaria, H.A. 1997. A hyaluronic acid membrane delivery system for cultured keratinocytes: clinical “take” rates in the porcine kerato-dermal model, J. Burn Care Rehabil. 18, 214–222.CrossRefGoogle Scholar
  131. Nevo, Z., Robinson, D., Horowitz, S., Hasharoni, A., Yayon, A. 1998. The manipulated mesenchymal stem cells in regenerated skeletal tissues, Cell Transplant. 7, 63–70.CrossRefGoogle Scholar
  132. Niedzwiedzki, T., Dabrowski, Z., Miszta, H., Pawlikowski, M. 1993. Bone healing after bone marrow stromal cell transplantation to the bone defect, Biomaterials 14, 115–121.CrossRefGoogle Scholar
  133. Nyberg, S.L., Remmel, R.P., Mann, H.J., Peshwa, M.V., Hu, W.S., Cerra, F.B. 1994. Primary hepatocytes outperform Hep G2 cells as the source of biotransformation functions in a bioartificial liver, Ann. Surg. 220(1), 59–67.Google Scholar
  134. Oksala, O., Salo, T., Tammi, R., Hakkinen, L., Jalkanen, M., Inki, P., Larjava, H. 1995. Expression of proteoglycans and hyaluronan during wound healing, J. Histochem. Cytochem. 43, 125–135.Google Scholar
  135. Okumura, M., Ohgushi, H., Takakura, Y., van Blitterswijk, C.A., Koerten, H.K. 1992. Analysis of primary bone formation in porous alumina: a fluorescence and scanning electron microscopic study of marrow cell induced osteogenesis, Biomed. Mater. Eng. 2, 191–201.Google Scholar
  136. Orgill, D.P., Yannas, I.V. 1997. Design of an artificial skin. IV. Use of island graft to isolate organ regeneration from scar synthesis and other processes leading to skin wound closure, J. Biomed. Mater. Res. 39, 531–535.CrossRefGoogle Scholar
  137. Park, S.-H., Linás, A., Goel, V.K., Keller, J.C. 1995. Hard tissue replacements, in: The Biomedical Engineering Handbook (J.D. Bronzino, ed.), pp. 672–703, CRC Press, Boca Raton.Google Scholar
  138. Prockop, D.J. 1997. Marrow stromal cells as stem cells for non hematopoietic tissues, Science 276, 71–74.CrossRefGoogle Scholar
  139. Puelacher, W.C., Kim, W., Vacanti, J.P., Schloo, B., Mooney, D., Vacanti, C.A. 1994. Tissue engineered growth of cartilage: The effect of varying the concentration of chondrocytes seeded onto synthetic polymer matrices, Oral Maxillofac. Surg. 23, 49–53.CrossRefGoogle Scholar
  140. Radice, M., Brun, P., Cortivo, R., Scapinelli, R., Bataillard, C., Abatangelo, G. 2000. Hyaluronan based biopolymers as delivery vehicles for bone marrow-derived mesenchymal progenitors, J. Biomed. Mater. Res. 50, 101–109.CrossRefGoogle Scholar
  141. Raines, E.W., Lane, T.F., Iruela-Arispe, M.L., Ross, R., Sage, E.H. 1992. The extracellular protein SPARC interacts with PDGF-AB and-BB and inhibits the binding of PDGF to its receptor, Proc. Natl. Acad. Sci. USA 89, 1281–1285.CrossRefGoogle Scholar
  142. Ramdi, H., Legay, C., Lievremont, M. 1993. Influence of matricidal molecules on growth and differentiation of entrapped chondrocytes, Exp. Cell Res. 207, 449–454.CrossRefGoogle Scholar
  143. Rennekampff, H.O., Kiessig, V., Hansbrough, J.F. 1996. Current concepts in the development of cultured skin replacement, J. Surg. Res. 62, 288–295.CrossRefGoogle Scholar
  144. Rescan, P.Y., Loreal, O., Hassell, J.R., Yamada, Y., Gillouzo, A., Clement, B. 1993. Distribution and origin of the basement membrane component perlecan in rat liver and primary hepatocyte culture, Am. J. Pathol. 142, 199–208.Google Scholar
  145. Rheinwald, J.G., Green, H. 1975. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells, Cell 6, 331–343.CrossRefGoogle Scholar
  146. Roberts, E.A., Letarte, M., Squire, J., Yang, S. 1994. Characterization of human hepatocyte lines derived form normal liver tissue, Hepatology 19, 1390–1399.CrossRefGoogle Scholar
  147. Robinson, D., Halperin, N., Nevo, Z. 1990. Regenerating hyaline cartilage in articular defects of old chickens using implants of embryonal chick chondrocytes embedded in a new natural delivery substance, Calcif. Tissue Int. 46, 246–253.CrossRefGoogle Scholar
  148. Rogers, J.J., Young, H.E., Adkinson, L.R., Lucas, P.A., Black, A.C., Jr. 1995. Differentiation factors induces expression of muscle, fat, cartilage and bone in a clone of mouse pluripotent mesenchymal stem cells, Am. Surg. 61, 231–236.Google Scholar
  149. Rojkind, M., Novikoff, P.M., Greenwel, P., Rubin, J., Rojas Valencia, L., de Carvalho, A., Stockert, R., Spray, D., Hertzberg, E.L., Wolkoff, A.W. 1995. Characterization and functional studies on rat liver fat-storing cell line and freshly isolated hepatocyte coculture system, Am. J. Pathol. 146, 1508–1520.Google Scholar
  150. Rosemberg, S.A. 1992. Immunization of cancer patients using autologous cancer cell modified by insertion of gene for tumor necrosis factor, Human Gene Ther. 3, 57–73.CrossRefGoogle Scholar
  151. Sandell, L.J., Morris, N., Robbins, J.R., Goldring, M.B. 1991. Alternatively spliced type II procollagen mRNAs define distinct populations of cells during vertebral development: differential expression of the amino-propeptide, J. Cell Biol. 114, 1307–1319.CrossRefGoogle Scholar
  152. Sasaki, T., Watanabe, C. 1995. Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid, Bone 16, 9–15.CrossRefGoogle Scholar
  153. Sawhney, A.S., Drumheller, P.D. 1998. Polymer synthesis, in: Frontiers in Tissue Engineering (C.W. Patrick, Jr., A.G. Mikos, L.V. McIntire, eds.), pp. 85–106, Pergamon, New York.CrossRefGoogle Scholar
  154. Scammell, B.E., Roach, H.I. 1996. A new role for the chondrocyte in fracture repair: endochondral ossification includes direct bone formation by former chondrocytes, J. Bone Miner. Res. 11, 737–745.CrossRefGoogle Scholar
  155. Schwarz, R.P., Goodwin, T.J., Wolf, D.A. 1992. Cell culture for three-dimensional modeling in rotating-wall vessel: an application of simulated biogravity, J. Tissue Cult. Method 14, 51–57.CrossRefGoogle Scholar
  156. Sciadini, M.F., Dawson, J.M., Johnson, K.D. 1997. Evaluation of bovine-derived protein with a natural coral carrier as a bone-graft substitute in a canine segmental defect model, J. Orthop. Res. 15, 844–857.CrossRefGoogle Scholar
  157. Shahabeddin, L., Damour, O., Berthod, F., Rousselle, P., Saintigny, G., Collombel, C. 1991. Reconstructed skin from co-cultured human keratinocytes and fibroblasts on a chitosane cross-linked collagen GAG-matrix, J. Mater. Sci. Mater. Med. 2, 222–226.CrossRefGoogle Scholar
  158. Shimaoka, S., Nakamura, T., Ichihara, A. 1987. Stimulation of growth of primary cultured adult rat hepatocytes without growth factors by coculture with nonparenchymal cells, Exp. Cell Res. 172, 228–242.CrossRefGoogle Scholar
  159. Shimomura, Y., Yoneda, T., Suzuki, F. 1975. Osteogenesis by chondrocytes from growth cartilage of rat rib, Calcif. Tissue Res. 19, 179–187.CrossRefGoogle Scholar
  160. Singhvi, R., Kumar, A., Lopez, G.P., Stephanopoulos, G.N., Wang, D.I.C., Whitesides, G.M., Ingber, D.E. 1994. Engineering cell shape and function, Science 264, 696–698.CrossRefGoogle Scholar
  161. Skalak, R., Fox, C.F. 1988. Tissue Engineering, pp. 55–63, Alan R. Liss, New York.Google Scholar
  162. Solchaga, L.A., Goldberg, V.M., Caplan, A.I. 2000. Hyaluronic acid-based biomaterials in tissue engineered cartilage repair, in: New Frontiers in Medical Sciences: Redefining of Hyaluronan (G. Abatangelo and P.H. Weigel, eds.), pp. 233–246.Google Scholar
  163. Stange, J., Mitzner, S., Strauss, M., Fischer, U., Lindemann, S., Peters, E., Holtz, M., Drewelow, B., Schmidt, R. 1995. Primary or established liver cells for a hybrid liver? Comparison of metabolic features, ASAIO 41(3), M310–315.CrossRefGoogle Scholar
  164. Stoker, A.W., Streuli, C.H., Martins-Green, M., Bissel, M.J. 1990. Designer microenvironment for the analysis of the cell and tissue function, Curr. Opin. Cell Biol. 2(5), 864–874.CrossRefGoogle Scholar
  165. Streuli, C.H., Schmidhauser, C., Kobrin, M., Bissell, M.J., Derynck, R. 1993. Extracellular matrix regulates expression of the TGF-beta 1 gene, J. Cell Biol. 120(1): 253–260.CrossRefGoogle Scholar
  166. Suhr, ST., Gage, F.H. 1993. Gene therapy for neurological disease, Arch.Neurol. 50(11), 1252–1268.Google Scholar
  167. Sussman, N.L., Kelly, J.H. 1993. Improved liver function following treatment with an extracorporeal liver assist device, Artif. Org. 17, 27–30.Google Scholar
  168. Toole, B.P. 1991. Proteoglycans and hyaluronan in morphogenesis and differentiation, in: Biology of Extracellular Matrix, 2nd edn. (E.D. Hay, ed.), pp. 305–341, P lenum Press, New York.Google Scholar
  169. Toole, B.P. 1997. Hyaluronan in morphogenesis, J. Intern. Med. 242, 35–40.CrossRefGoogle Scholar
  170. Turner, T.D. 1979. Hospital usage of absorbent dressings, Pharm. J. 222, 421–426.Google Scholar
  171. Turner, T.D. 1997. The development of wound management products, in: Chronic Wound Care (D. Krasner, D. Kane, eds.), pp. 124–138, Health Management Publications, Inc., Wayne.Google Scholar
  172. Urist, M.R. 1965. Bone formation by autoinduction, Science 150, 893–899.CrossRefGoogle Scholar
  173. Utesch, D., Oesch, F. 1992. Dependency of the in vitro stabilization of differentiated functions in liver parenchymal cells on the type of cell line used for co-culture, In Vitro Cell Dev. Biol. 28A, 193–198.CrossRefGoogle Scholar
  174. Utesch, D., Molitor, E., Platt, K.L., Oesch, F. 1991. Differential stabilization of cytochrome-p-450 isoenzymes in primary cultures of adult-rat liver parenchymal-cells, In Vitro Cell Dev. Biol. 27(11), 858–863.CrossRefGoogle Scholar
  175. Vacanti, C.A., Upton, J. 1994. Tissue-engineered morphogenesis of cartilage and bone by means of cell transplantation using synthetic biodegradable polymer matrices, Bone Rep. Reg. 9, 318–321.Google Scholar
  176. Vacanti, C.A., Langer, R., Schloo, B., Vacanti, J.P. 1991. Synthetic polymers seeded with chondrocytes provide a template for a new cartilage formation, Plast. Reconstr. Surg. 88, 753–759.CrossRefGoogle Scholar
  177. Vacanti, C.A., Cimma, L.G., Ratkowski, D. 1992. Tissue engineered growth of new cartilage in the shape of a human ear using synthetic polymers seeded with chondrocytes, Mater. Res. Soc. 252, 367–373.Google Scholar
  178. Vacanti, C.A., Kim, W., Upton, J., Vacanti, M.P., Mooney, D., Schloo, B., Vacanti, J.P. 1993. Tissue-engineered growth of bone and cartilage, Transplant. Proc. 25, 1019–1021.Google Scholar
  179. Vaino, S., Muller, U. 1997. Inductive tissue interactions, cell signaling and the control of kidney organogenesis, Cell 90, 975–978.CrossRefGoogle Scholar
  180. Vaughan, J.M. 1981. The Physiology of Bone, 3rd edn., Clarendon Press, Oxford.Google Scholar
  181. Wainwright, D., Madden, M., Luterman, A., Hunt, J., Monafo, W., Heinbach, D., Kagan, R., Sittig, K., Dimick, A., Herndon, D. 1996. Clinical evaluation of an acellular allograft dermal matrix in full-thickness burns, J. Burn Care Rehabil. 17, 124–136.CrossRefGoogle Scholar
  182. Wakitani, S., Kimura, T., Hirooka, A., Ochi, T., Yuneda, M., Owaki, H., Ono, K., Yasui, N. 1989. Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel, J. Bone Jt. Surg. 71, 74–80.Google Scholar
  183. Wakitani, S., Goto, T., Pineda, S.J., Young, R.G., Mansour, J.M., Caplan, A.I., Goldberg, V.M. 1994. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage, J. Bone Jt. Surg. 76-A, 579–592.Google Scholar
  184. Wanson, J.C., Mosselmans, R., Brouwer, A., Knook, D.L. 1979. Interaction of adult rat hepatocytes and sinusoidal cells in coculture, Biol. Cell 36, 7–16.Google Scholar
  185. Warejcka, D.J., Harvey, R., Taylor, B.J., Young, H.E., Lucas, P.A. 1996. A population of cells isolated from rat heart capable of differentiating into several mesodermal phenotypes, J. Surg. Res. 62, 233–242.CrossRefGoogle Scholar
  186. Watt, F.M. 1991. Cell culture models of differentiation, FASEB J. 5, 287–294.Google Scholar
  187. Wegner, H., Schareck, W., Bayer-Helms, H., Gebhardt, R. 1992. Different proliferative potential of rat and pig hepatocytes in pure primary culture and coculture, Eur. J. Cell Biol. 58, 411–417.Google Scholar
  188. Weigel, P.H., Frost, S.J., McGary, C.T., LeBoeuf, R.D. 1988. The role of hyaluronic acid in inflammation and wound healing, Int. J. Tissue React. 10, 355–365.Google Scholar
  189. Widmer, M.S., Mikos, A.G. 1998. Fabrication of biodegradable polymer scaffolds for tissue engineering, in: Frontiers in Tissue Engineering (C.W. Patrick, Jr., A.G. Mikos, L.V. McIntire, eds.), pp. 107–120, Pergamon, New York.CrossRefGoogle Scholar
  190. Wilkins, L.M., Watson, S.R., Prosky, S.J., Meunier, S.F., Parenteau, N.L. 1994. Development of a belayered living skin construct for clinical applications, Biotechnol. Bioeng. 1994, 747–756.CrossRefGoogle Scholar
  191. Yamaguchi, Y., Mann, D.M., Ruoslathi, E. 1990. Negative regulation of by the proteoglycan decorin, Nature 346, 281–284.CrossRefGoogle Scholar
  192. Yannas, I.V. 1995. Artificial skin and dermal equivalents, in: Biomedical Engineering Handbook (J.D. Bronzino, ed.), pp. 2025–2038, CRC Press, Boca Raton.Google Scholar
  193. Yannas, I.V., Burke, J.F., Gordon, P.L., Huang, C., Rubenstein, R.H. 1980. Design of an artificial skin. II. Control of chemical composition, J. Biomed. Mater. Res. 14, 65–81.CrossRefGoogle Scholar
  194. Yarmush, M.L., Toner, M., Dunn, J.C.Y., Rotem, A., Hubel, A., Tompkins, R.G. 1992. Hepatic tissue engineering, Ann. N.Y. Acad. Sci. 665, 238–252.CrossRefGoogle Scholar
  195. Yaszemski, M.J., Payne, R.G., Hayes, W.C., Langer, R., Mikos, A.G. 1996. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone, Biomaterials 17, 175–185.CrossRefGoogle Scholar
  196. Young, H.E., Mancini, M.L., Wright, R.P., Smith, J.C., Black, A.C., Jr., Reagan, C.R., Lucas, P.A. 1995. Mesenchymal stem cells reside within the connective tissues of many organs, Dev. Dyn. 202, 137–144.Google Scholar
  197. Young, H.E., Wright, R.P., Mancini, M.L., Lucas, P.A., Reagan, C.R., Black, A.C., Jr. 1998. Bioactive factors affect proliferation and phenotypic expression in progenitor and pluri-potent stem cells, Wound Rep. Reg. 6, 65–75.CrossRefGoogle Scholar
  198. Zacchi, V., Soranzo, C., Cortivo, R., Radice, M., Brun, P., Abatangelo, G. 1998. In Vitro engineering of human skin-like tissue, J. Biomed. Mater. Res. 40, 187–194.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Giovanni Abatangelo
    • 1
  • Paola Brun
    • 1
  • Marco Radice
    • 1
  • Roberta Cortivo
    • 1
  • Marcus K. H. Auth
    • 2
  1. 1.Institute of Histology and Embryology, Faculty of MedicineUniversity of PadovaPadovaItaly
  2. 2.Universitätskinderklinik, Abteilung Al-lgemeine Kinderheilkunde mit Schwerpunkt, NeuropädiatrieKlinikum der Universitäts-GesamthochschuleEssenGermany

Personalised recommendations