Advertisement

Materials/Biological Environment Interactions

  • Orsolina Petillo
  • Alfonso Barbarisi
  • Sabrina Margarucci
  • Alfredo De Rosa
  • Gianfranco Peluso
Chapter
  • 1.7k Downloads

Keywords

Focal Adhesion Idiopathic Pulmonary Fibrosis Epithelial Growth Factor Receptor Interstitial Collagenase Internal Stress Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Waston, J.D. 1994, in: Molecular Biology of the Cell, pp. 971–995, Garland Publishing, New York.Google Scholar
  2. Banes, A.J. 1993, in: Phsical Forces and Mammalian Cell (J.A. Frango, ed.), pp. 81–123, Academic Press, New York.Google Scholar
  3. Barry, E.L., Mosher, D.F. 1988. Factor XIII cross-linking of fibronectin at cellular matrix assembly sites, J. Biol. Chem. 263, 10464–10469.Google Scholar
  4. Bitterman, P.B., Rennard, S.I., Adelberg, S., Crystal, R.G. 1983. Role of fibronectin as a growth factor for fibroblasts, J. Cell. Biol. 97, 1925–1932.CrossRefGoogle Scholar
  5. Calof, A.L., Lander, A.D. 1991. Relationship between neuronal migration and cell-substratum adhesion: laminin and merosin promote olfactory neuronal migration but are antiadhesive, J. Cell. Biol. 115, 779–794.CrossRefGoogle Scholar
  6. Chen, C., Mrksich, M., Huang, S., Whitesides, G., Ingber, D. 1997. Geometric control of cell life and death, Science 276, 1425–1428.Google Scholar
  7. Choquet, D., Felsenfeld, D., Sheetz, M. 1997. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages, Cell 88, 39–48.CrossRefGoogle Scholar
  8. Dallas, S.L., Miyazono, K., Skerry, T.M., Mundy, G.R., Bonewald, L.F. 1995. Dual role for the latent transforming growth-factor-β-binding-protein in storage of latent TGF-β in the extracellular-matrix and as a structural matrix protein, J. Cell Biol. 131, 539–549.CrossRefGoogle Scholar
  9. Davies, P., Robotewskyj, A., Griem, M. 1994. Quantitative studies of endothelial cell adhesion: directional remodeling of focal adhesion sites in response to flow forces, J. Clin. Invest. 93, 2031–2038.CrossRefGoogle Scholar
  10. Dean, III, J.W., Chanrasekaran, S., Tanzer, M.L. 1990. A biological role of the carbohydrate moieties of laminin, J. Clin. Chem. 265, 12553–12562.Google Scholar
  11. Deuel, T.F. 1997, in: Principles of Tissue Engineering (R.P. Lanza, R. Langer, W.L, Chick, eds.) pp. 133–149, Academic Press, New York.Google Scholar
  12. Edwards, G.M., Wilford, F.H., Liu, X.W., Hennighausen, L., Djiane, J., Streuli, C.H. 1998. Regulation of mammary differentiation by extracellular matrix involves protein-tyrosine phosphatates, J. Biol. Chem. 273, 9495–9500.Google Scholar
  13. Felsenfeld, D., Choquet, D., Sheetz, M. 1996. Ligand binding regulates the directed movement of b1 integrins on fibroblasts, Nature 383, 438–440.CrossRefGoogle Scholar
  14. Fouser, L. Iruela-Arispe, L., Bornstein, P., Sage, E.H. 1991. Transcriptional activity of the alpha l(I)-collagen promoter is correlated with the formation of capillary-like structures by endothelial cells in vitro, J. Biol. Chem. 266, 18345–18351.Google Scholar
  15. Gordon, M.Y. 1988. Extracellular matrix of the marrow microenvironment, Br. J. Haemat. 70, 1–4.Google Scholar
  16. Halliday, N., Tomasek, J. 1995. Mechanical properties of the extracellular matrix influence fibrobectin assembly in vitro, Exp. Cell Res. 217, 107–117.CrossRefGoogle Scholar
  17. Howe, A., Apin, A.E., Alahari, S.K., Juliano, R.L. 1998. Integrin signaling and cell growth control, Curr. Opin. Biol. 10, 220–231.Google Scholar
  18. Hubbell, J.A. 1995. Biomaterials in tissue engineering, Biotechnology 13, 565–576.Google Scholar
  19. Ingber, D.E., Prusty, D., Frangioni, J.V., Cragoe, E.J., Lechene, C., Schwartz, M.A. 1990. Control of intracellular pH and growth by fibronectin in capillary endothelial cells, J. Cell Biol. 110, 1803–1811.CrossRefGoogle Scholar
  20. Jones, G.E., Arumugham, R.G., Tanzer, M.L. 1986. Fibronectin glycosylation modulates fibroblast adhesion and spreading, J. Cell. Biol. 103, 1663–1670.CrossRefGoogle Scholar
  21. Jones, J.I., Gockerman, A., Busby, W.H., Camachohubner, C., Clemmons, D.R. 1993. Extracelluar-matrix contains insulin-like growth-factor binding protein-5-potentiation of the effects of IGF-I, J. Cell Biol. 121, 679–687.CrossRefGoogle Scholar
  22. Lawler, J., Weinstein, R., Hynes, R.O. 1988. Cell attachment to thrombospondin: the role of ARG-GLY-ASP, calcium, and integrin receptors, J. Cell. Biol. 107, 2351–2361.CrossRefGoogle Scholar
  23. Lee, Y.J., Streuli, C.H. 1999. Extracellular matrix selectively modulates the response of mammary epithelial cells to different soluble signaling ligands, J. Biol. Chem. 274, 22401–22408.Google Scholar
  24. Maniotis, A., Chen, C., Ingber, D. 1997. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure, Proc. Nad. Acad. Sci. VSA 94, 849–854.Google Scholar
  25. Martin, P. 1997. Wound healing-aiming for perfect skin regeneration, Science 276, 75–81.CrossRefGoogle Scholar
  26. Martinet, Y., Rom, W.N., Grotendorst, G.R., Martin, G.R., Crystal, R.G. 1987. Exaggerated spontaneous release of platelet-derived growth factor by alveolar macrophages from patients with idiopathic pulmonary fibrosis, N. Engl. J. Med. 317, 202–209.CrossRefGoogle Scholar
  27. McNamee, H.P., Ingber, D.E., Schwartz, M.A. 1993. Adhesion to fibronectin stimulates inositol lipid synthesis and enhances PDGF-induced inositol lipid break-down, J. Cell Biol. 121, 673–678.CrossRefGoogle Scholar
  28. Mooney, D.J., Baldwin, D.F., Suh, N.P., Vacanti, J.P., Langer, R. 1996. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents, Biomaterials 17, 1417–1422.Google Scholar
  29. Parsons-Wingerter, P.A., Saltzman, W.M. 1993. Growth versus function in the three-dimen-sional culture of single and aggregated hepatocytes within collagen gels, Biotechnol. Prog. 9, 600–607.CrossRefGoogle Scholar
  30. Paulsson, M., Saladin, K., Landwehr, R. 1988. Binding of Ca2+ influences susceptibility of laminin to proteolytic digestion and interactions between domain-specific laminin fragments, Eur, J. Biochem. 177, 477–481.CrossRefGoogle Scholar
  31. Pelham, R.J., Wang, Y.-L. 1997. Cell locomotion and focal adhesions are regulated by substrate flexibility, Proc. Natl. Acad. Sci. USA 94, 13661–13665.CrossRefGoogle Scholar
  32. Putnam, A.J., Mooney, D.J. 1996. Tissue engineering using synthetic extracellular matrices, Nat. Med. 2, 824–826.CrossRefGoogle Scholar
  33. Riches, D.W., Chan, E.D., Winston, B.W. 1996. TNF-alpha-induced regulation and signalling in macrophages, Immunobiology 195, 477–490.Google Scholar
  34. Romer, J., Bugge, T.H., Pyke, C., Lund, L.R., Fick, M.J., Degen, J.L., Dano, K. 1996 Impaired wound healing in mice with a disrupted plasminogen gene, Nat. Med. 2, 287–292.Google Scholar
  35. Ruoslahti, E. 1989. Proteoglycans in cell regulation, J. Biol. Chem. 264, 13369–13372.Google Scholar
  36. Sage, E.H., Bornstein, P. 1991. Extracellular proteins that modulate cell-matrix interactions, J. Biol Chem. 266, 14831–14834.Google Scholar
  37. Schofield, R. 1978. The relationship between the spleen-colony forming cell and the haema-topoietic stem cell, Blood Cells 4, 7–25.Google Scholar
  38. Schwartz, M.A., Baron, V. 1999. Interactions between mitogenic stimuli, or, a thousand and one connections, Curr. Opin. Biol. 11, 197–202.Google Scholar
  39. Schwartz, M.A., Lechene, C. 1992. Adhesion is required for protein Kinase C-dependent activation of the Na+/H+ antiporter by platelet-derived growth factor, Proc. Natl. Acad. Sci. USA 89, 6138–6141.Google Scholar
  40. Shapiro, S.D. 1998. Matrix metalloproteinase degradation of extracellular matrix: biological consequences, Curr. Opin. Cell. Biol. 10, 602–608.CrossRefGoogle Scholar
  41. Shyy, J.Y., Chien, S. 1997. Role of integrins in cellular responses to mechanical stress and adhesion, Curr. Opin. Cell Biol. 9, 707–713.CrossRefGoogle Scholar
  42. Stoker, M., O’Neill, C., Berryman, S., Waxman, V. 1968. Anchorage and growth regulation in normal and virus-transformed cells, Int. J. Cancer 3, 683–693.Google Scholar
  43. Turker, R.W., Meade-Cobun, K., Ferris, D. 1990. Cell shape and increased free cytosolic calcium [Ca2+]i induced by growth factors, Cell Calcium 11, 201–209.Google Scholar
  44. Vuori, K., Ruoslahti, E. 1994. Association of insulin receptor substrate-1 with integrins, Science 266, 1576–1578.Google Scholar
  45. Wang, N., Butler, J., Ingber, D. 1993. Mechanotransduction across the cell surface and through the cytoskeleton, Science 260, 1124–1127.Google Scholar
  46. Werb, Z. 1997. ECM and cell surface proteolysis: regulating cellular ecology, Cell 3, 439–442.Google Scholar
  47. Zhong, C., Chrzanowska-Wodnicka, M., Brown, J., Shaub, A., Belkin, A., Burridge, K. 1998. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly, J. Cell Biol. 141, 539–551.CrossRefGoogle Scholar
  48. Zhu, Y., Oganesian, A., Keene, D.R., Sandell, L.J. 1999. [Type IIa] procollagen containing the cysteine-rich amino propeptide is deposited in the extracellular matrix of prechondrogenic tissue and binds to TGF-b 1 and BMP-2, J. Cell Biol. 131, 539–549.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Orsolina Petillo
    • 1
  • Alfonso Barbarisi
    • 1
  • Sabrina Margarucci
    • 1
  • Alfredo De Rosa
    • 1
  • Gianfranco Peluso
    • 1
  1. 1.Istituto di Biochimica delle Proteine ed Enzimologia, Consiglio Nazionale delle RicercheArco Felice, NapoliItaly

Personalised recommendations