Mechanical Properties of Tooth Structures

  • Roberto De Santis
  • Luigi Ambrosio
  • Luigi Nicolais


Fracture Toughness Linear Elastic Fracture Mechanic Periodontal Ligament Compact Tension Strain Energy Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balooch, M., Wu-Magidi, I.C., Balazs, A., Lundkvist, A. S., Marshall, S.J., Marshall, G.W., Siekhaus, W.J., Kinney, J.H. 1998. Viscoelastic properties of demineralised human dentin measured in water with atomic force microscope (AFM)-based indentation, J. Biomed. Mater. Res. 40, 539–544.CrossRefGoogle Scholar
  2. Behiri, J.C., Bonfield, W. 1984. Fracture of bone: the effect of density, specimen thickness and crack velocity on longitudinal fracture, J. Biomech. 17, 25–34.CrossRefGoogle Scholar
  3. Bonfield, W. 1987. Advances in the fracture mechanics of cortical bone, J. Biomech. 20, 1071–1081.CrossRefGoogle Scholar
  4. Bonfield, W., Datta, P.K. 1976. Fracture toughness of compact bone, J. Biomech. 9, 131–134.CrossRefGoogle Scholar
  5. Bonfield, W., Grynpass, M.D. 1977. Anisotropy of the Young’s moduls of bone, Nature 270, 453–454.CrossRefGoogle Scholar
  6. Cagidiaco, M.C., Ferrari, M. 1995. Dentinal tubules, in: Bonding to Dentin, O. Debatte & F. Ed., Livorno.Google Scholar
  7. Craig, R.G., Peyton, F.A., Johnson, D.W., 1961. Compressive properties of enamel, dental cements and gold, J. Dent. Res. 40, 936–945.Google Scholar
  8. Drummond, J.L., Sakaguchi, R.L., Racean, D.C., Wozny, J., Steinberg, A.D. 1996. Testing mode and surface treatment effects on dentin bonding, J. Biomed. Mater. Res. 32, 533–541.CrossRefGoogle Scholar
  9. El Mowafy, O.M., Watts, D.C. 1986. Fracture of human dentin, J. Dent. Res. 35, 677–681.Google Scholar
  10. Forss, H., Seppa, L., Lappalainen, R. 1991. In vitro abrasion resistance and hardness of glass-ionomer cements, Dent. Mater. 7, 36–39.CrossRefGoogle Scholar
  11. Garberoglio, R., Brannstrom, M. 1976. Scanning electron microscopic investigation of human dentinal tubules, Arch. Oral Biol. 21, 355–362.Google Scholar
  12. Kinney, J. H., Balooch, M., Marshall, S.J., Marshall, G.W., Weihs, T.P. 1996a. Atomic force microscope measurements of the hardness and elasticity of peritubular and intertubular human dentin, J. Biomech. Eng. 118, 133–135.Google Scholar
  13. Kinney, J.H., Balooch, M., Marshall, S.J., Marshall, G.W., Weihs, T.P. 1996b. Hardness and Young’ modulus of human peritubular and intertubular dentine, Arch. Oral Biol. 41, 9–13.Google Scholar
  14. Kinney, J. H., Balooch, M., Marshall, G. W., Marshall, S. J. 1999. A micromechanics model of the elastic properties of human dentine, Arch. Oral Biol. 44, 813–822.Google Scholar
  15. Kuboky, Y., Mechanic, G.L. 1982. Comparative molecular distribution of cross-link in bone and dentine collagen: structure-function relationship, Calcif. Tissue Int. 34, 306–308.Google Scholar
  16. Lin, C.P., Douglas, W.H. 1994a. Structure-property relations and crack resistance at the bovine dentin-enamel junction, J. Dent. Res. 73, 1072–1078.Google Scholar
  17. Lin, C.P., Douglas, W.H. 1994b. Failure mechanism at the human dentin-resin interface: a fracture mechanism approach, J. Biomech. 27, 1037–1047.Google Scholar
  18. Melvin, J.W., Evans, F.G. 1973. Crack propagation in bone, pp. 87–88, Biomechanics Symposium, ASME New York.Google Scholar
  19. Moyle, D.D., Gavens, A.J. 1986. Fracture propeties of bovine tibial bone, J. Biomech. 19, 919–927.Google Scholar
  20. Norman, T.L., Vashishth, D., Burt, D. 1995. Fracture toughness of human bone under tension, J. Biomech. 28, 309–320.CrossRefGoogle Scholar
  21. Norman, T.L., Vashishth, D., Burt, D. 1996. Resistance to crack growth in human cortical bone is greater in shear than in tension, J. Biomech. 29, 1023–1031.CrossRefGoogle Scholar
  22. Reilly, D.T., Burstein, A.H., Frankel, V.H. 1974. The elastic modulus for bone, J. Biomech. 7, 271–275.CrossRefGoogle Scholar
  23. Robertson, D.M., Robertson, D., Barret, C.G. 1978. Fracture toughness, critical crack length and plastic zone size in bone, J. Biomech. 11, 359–364.Google Scholar
  24. Rooke, D.P. 1993. Development of fracture mechanics, in: Static and Dynamic Fracture Mechanisms (M.H. Aliabad, C.A. Brebbia, V.Z. Parton, eds.), pp. 3–35, Computational Mechanics Publications, Portland.Google Scholar
  25. Sano, H., Shono, T., Sonoda, H., Takatsu, T., Ciucchi, B., Carvalho, R., Pashley, D.H. 1994. Relationship between surface area for adhesion and tensile bond strength — evaluation of a micro-tensile bond test. Dent Mater, 10, 236–40.CrossRefGoogle Scholar
  26. Stanley, H.R. 1990. Pulpal responses to ionomer cements — biological characteristics, J. Am. Dem. Assoc. 120, 25–29.Google Scholar
  27. Suresh, S. 1991. Principles of fracture mechanics and their implication for fatigue, in: Fatigue of Materials (D.R. Clarke, ed.), Cambridge University Press.Google Scholar
  28. Tam, L.E., Yim, D. 1997. Effect of dentine depth on the fracture toughness of dentine-composite adhesive interfaces, J. Dent. 25, 339–346.CrossRefGoogle Scholar
  29. van Meerbeek, B., Willems, G., Celis, J.P., Roos, J.R., Braem, M. 1993. Lambrechts. Assessment by nano-indentation technique of the hardness and elasticity of the resin dentin bonding area, J. Dent. Res. 72, 1434–1442.Google Scholar
  30. van Noort, R. 1998. Dental Materials: 1996. Dentine bonding, J. Dent. 26, 191–207.Google Scholar
  31. Vashishth, D., Behiri, J.C., Bonfield, W. 1997. Crack growth resistance in cortical bone: Concept of microcrack toughness, J. Biomech. 30, 763–769.CrossRefGoogle Scholar
  32. Veis, A. 1996. in: Dentin. Extracellular Matrix. Tissue Function (Wayne D. Comper, ed.), Vol. 1, Amsterdam.Google Scholar
  33. Wang, X., Agrawal, C.M. 1996. Fracture toughness of bone using a compact sandwich specimen: effect of sampling sites and crack orientations, J. Biomed. Mater. Res. 33, 13–21.Google Scholar
  34. Watanabe, L.G., Marshall, G.W., Marshall, S.J. 1996. Dentin shear strength: effects of tubule orientation and intratooth location, Dent. Mater. 12, 109–115.Google Scholar
  35. Willems, G., Lambrechts, P., Braem, M., Celis, J.P., Vanherle, G.A. 1992. Classification of dental composites according to their morphological and mechanical characteristics, Dent. Mater. 8, 310–331.Google Scholar
  36. Willems, G. Celis, J.P., Lambrechts, P., Braem, M. 1993. Hardness and determined by nano-indentation technique of filler particles of dental restorative materials compared with human enamel, J. Biomed. Mater. Res. 27, 747–755.CrossRefGoogle Scholar
  37. Xu, H.H.K., Smith, D.T., Jahanmir, S., Romberg, E., Kelly, J.R., Thompson, V.P., Rekow, E.D. 1998. Indentation damage and mechanical properties of human enamel and dentin, J. Dent. Res. 77, 472–480.Google Scholar
  38. Yoshiyama, M., Carvalho, R.M., Sano, H., Horner, J.A., Brewer, P.D., Pashley, D.H. 1996. Regional bond strengths of resins to human root dentine, J. Dent, 24, 435–442.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Roberto De Santis
    • 1
  • Luigi Ambrosio
    • 1
  • Luigi Nicolais
    • 1
  1. 1.Institute of Composite Materials Technology C.N.R., and C.R.I.B.University of Naples, “Federico II”NaplesItaly

Personalised recommendations