Advertisement

Acrylic Bone Cements

  • Maria-Pau Ginebra
  • Francisco-Javier Gil
  • Josep-Anton Planell
Chapter

Keywords

Fracture Toughness Bone Cement Fatigue Crack Propagation Fatigue Crack Propagation Rate PMMA Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bargar, W.L., Brown, S.A., Paul, H.A., Voegli, T., Hseih, Y., Sharkey, N. 1986. In vivo versus in vitro polymerization of acrylic bone cement: effect on material properties, J. Orthop. Res. 4, 86.CrossRefGoogle Scholar
  2. Bayne, S.C., Lautenschlager, E.P., Compere, C.L., Wildes, R. 1975. Degree of polymerization of acrylic bone cement, J. Biomed. Mater. Res. 9, 27.CrossRefGoogle Scholar
  3. Bayne, S.C., Lautenschlager, E.P., Greener, E.H., Meyer, P.R. 1977. Clinical influences on bone cement monomer release, J. Biomed. Mater. Res. 11, 859.CrossRefGoogle Scholar
  4. Beaumont, P.W.R. 1977. The strength of acrylic bone cements and acrylic cement-stainless steel interfaces. Part I, The strength of acrylic bone cement containing second phase dispersions, J. Mater. Sci. 12, 1845.Google Scholar
  5. Beaumont, P.W.R., Young, R.J. 1975. Slow crack growth in acrylic bone cement, J. Biomed. Mater. Res. 9, 423.CrossRefGoogle Scholar
  6. Berry, J. 1964. Fracture processes in polymeric materials. V. Dependence of the ultimate properties of polymethylmethacrylate on molecular weight, J. Polym. Sci. A, 2, 4069.Google Scholar
  7. Birch, R., Wilkinson, M.C.P., Vijayan, K.P., Gschmeissner, S. 1992. Cement burn of the sciatic nerve, J. Bone Jt. Surg. 74B, 731–733.Google Scholar
  8. Brauer, G.M., Termini, D. J., Dickson, G. 1977. Analysis of the ingredients and determination of the residual components of acrylic bone cements, J. Biomed. Mater. Res. 11, 577.CrossRefGoogle Scholar
  9. Brauer, G.M., Steinberger, D.R., Stansbury, J.W. 1986. Dependence of curing time, peak temperature, and mechanical properties on the composition of bone cement, J. Biomed. Mater. Res. 20, 839.CrossRefGoogle Scholar
  10. Buckley, C.A., Lautenschlager, E.P., Gilbert, J.L. 1991. High strength PMMA fibers for use in a self-reinforced acrylic cement, fiber tensile properties and composite toughness, Proceedings of the 17th Annual Meeting of the Society for Biomaterials, p. 45.Google Scholar
  11. Caravia, L., Dowson, D., Fisher, J., Jobbins, B. 1990. The influence of bone and bone cement debris on counterface roughness in sliding wear tests of ultra-high molecular weight polyethylene on stainless steel, Proc. Inst. Mech. Eng. 204, 65–70.Google Scholar
  12. Carter, D.R., Gates, E.I., Harris, W.H. 1982. Strain-controlled fatigue of acrylic bone cement, J. Biomed. Mater. Res. 16, 647.CrossRefGoogle Scholar
  13. Charnley, J. 1964a. Anchorage of the femoral head prosthesis to the shaft of the femur, J. Bone Jt. Surg. 42B, 28.Google Scholar
  14. Charnley, J. 1964b. Bonding of prosthesis to bone by cement, J. Bone Jt. Surg. 46B, 518.Google Scholar
  15. Charnley, J. 1970. Acrylic Cement in Orthopaedic Surgery, E.& S, Livingstone, London.Google Scholar
  16. Cooper, J.R., Dowson, D., Fisher, J., Jobbins B. 1991. Ceramic bearing surfaces in total artificial joints: resistance to third body wear damage from bone cement particles, J. Med. Eng. Technol. 15, 63–67.Google Scholar
  17. Dall, D.M., Miles, A.W., Juby, G. 1986. Accelerated polymerization of acrylic bone cement using preheated implants, Clin. Orthop. Relat. Res. 211, 148.Google Scholar
  18. Dandurand, J., Delpech, V., Lebugle, A., Lamure, A., Lacabanne, C. 1990. Study of the mineral-organic linkage in an apatitic reinforced bone cement, J. Biomed. Mater. Res. 24, 1377.CrossRefGoogle Scholar
  19. Davies, J.P., Harris W.H. 1991. Effect of hand-mixing tobramycin on the fatigue strength of Simplex P, J. Biomed. Mater. Res. 25, 1409.CrossRefGoogle Scholar
  20. Davies, J.P., Harris, W.H. 1992. The effect of the addition of methylene blue on the fatigue strength of simplex P bone-cement, J. Appl. Biomat. 3, 81.Google Scholar
  21. Davies, J.P., O’Connor, D., Burke, D., Harris, W. 1989. Influence of antibiotic impregnation on fatigue life of Simplex P and Palacos R acrylic bone cements with and without centrifugation, J. Biomed. Mater. Res. 23, 379.CrossRefGoogle Scholar
  22. Fishbane, B.M., Pond, R.B. 1977. Stainless steel fiber reinforcement of polymethylmethacrylate, Clin. Orthop. Relat. Res. 128, 194.Google Scholar
  23. Freitag, T.A., Cannon, S.L. 1977. Fracture characteristics of acrylic bone cements. II. Fatigue, J. Biomed. Mater. Res. 11, 609.CrossRefGoogle Scholar
  24. Gentil, B., Paugam, C., Wolf, C., Lienhart, A., Augereau, B. 1993. Methylmethacrylate plasma levels during total hip arthroplasty, Clin. Orthop. Relat. Res. 287, 112.Google Scholar
  25. Ginebra, M.P., Aparicio, C., Albuixech, L., Fernández-Barragán, E., Gil, F.J., Planell, J.A., Morejón, L., Vázquez, B., San Román J., 1999. Improvement of the mechanical properties of acrylic bone cements by substitution of the radio-opaque agent, J. Mater. Sci., Materials in Medicine 10, 733–737.Google Scholar
  26. Ginebra, M.P., Albuixech, L., Fernández-Barragán, Aparicio, C., Gil, F.J., San Román, J., Vázquez, B., Planell, J.A. 2000a. Mechanical performance of acrylic bone cements containing different radiopacifying agents, Biomaterials, in press.Google Scholar
  27. Ginebra, M.P., Albuixech, L., Fernández-Barragán, Clément, J., Gil, F.J., Planell, J.A. 2000b. Effect of different radiopacifying agents on the fatigue crack propagation of acrylic bone cements, Proceedings of the 9th International Conference on Polymers in Medicine and Surgery, pp. 288–295, IOM Communications Ltd, London.Google Scholar
  28. Guida, G., Riccio, V., Gatto, S., Migliaresi, C., Nicodemo, L., Nicolais, L., Palomba, C. 1984. A glass bead composite acrylic bone cement, in: Biomaterials and Biomechanics (P. Ducheyne, G. Van der Perre, A.E. Aubert, eds.), p. 19, Elsevier Science Publ., Amsterdam.Google Scholar
  29. Haas, S.S., Brauer, G.M., Dickson, G. 1975. A characterization of polymethylmethacrylate bone cement, J. Bone Jt. Surg. 57A(3), 380.Google Scholar
  30. Hailey, J.L., Turner, I.G., Miles, A.W., Price, G. 1994. The effect of post-curing chemical bone changes on the mechanical properties of acrylic bone cement, J. Mater. Sci. Materials in. Medicine, 5, 617–621.Google Scholar
  31. Henning, W., Blencke, B.A., Brömer, H., Deutscher, K.K., Gross, A., Ege W. 1979. Investigations with bioactivated polymethylmethacrylates, J. Biomed. Mater. Res. 13, 89.Google Scholar
  32. Henrich, D.E., Cram, A.E., Park, J.B., Liu, Y.K., Reddi, H. 1993. Inorganic bone and demineralized bone matrix impregnated bone cement: A preliminary in vivo study, J. Biomed. Mater. Res. 27, 277.CrossRefGoogle Scholar
  33. Isaac, G.H., Atkinson, J.R., Dowson, D. Kennedy P.D., Smith M.R. 1987. The causes of femoral head roughening in explanted Charnley hip prostheses, Eng. Med. 16, 167–173.CrossRefGoogle Scholar
  34. Jaffe, W.L., Rose, R.M., Radin, E.L. 1974. On the stability of the mechanical properties of self-curing acrylic bone cement, J. Bone Jt. Surg. 56A(8), 1711.Google Scholar
  35. James, M.L. 1987. Complicaciones anestésicas y metabólicas in: Complicaciones de las artroplastias males de cadera (R.S.M Ling, ed.), Salvat Editores, Barcelona.Google Scholar
  36. Jasty, M., Jiranek, W., Harris, W. 1992. Acrylic fragmentation in total hip replacements and its biological consequences, Clin. Orthop. Relat. Res. 285, 116.Google Scholar
  37. Johnson, J.A., Provan, J.W., Krygier, J.J., Chan, K.H., Miller J. 1989. Fatigue of acrylic bone cement: effect of frequency and environment, J. Biomed. Mater. Res. 23, 819.CrossRefGoogle Scholar
  38. Krause, W., Mathis, R. 1988. Fatigue properties of acrylic bone cements: review of the literature, J. Biomed. Mater. Res. 22, 37.Google Scholar
  39. Krause, W., Mathis, R., Grimes, L. 1988. Fatigue properties of acrylic bone cement: S-N, P-N and P-S-N data, J. Biomed. Mater. Res. 22(A3), 221.Google Scholar
  40. Kusy, R.P. 1978. Characterization of self-curing acrylic bone cements, J. Biomed. Mater. Res. 12, 271.CrossRefGoogle Scholar
  41. Kusy, R.P., Katz, M.J. 1976. Effect of molecular weight on the fracture surface energy of poly(methyl methacrylate) in cleavage, J. Mater. Sci. 11, 1475.Google Scholar
  42. Lautenschlager, E.P., Jacobs, J.J. Marshall, G.W., Meyer, P.R. 1976. Mechanical properties of bone cements containing large doses of antibiotic powders, J. Biomed. Mater. Res. 10, 929.Google Scholar
  43. Lautenschlager, E.P., Stupp, S.I., Keller, J.C. 1984. Structure and properties of acrylic bone cement, in, Functional Behaviour of Orthopaedic Biomaterials. Volume II. Applications (P. Ducheyne, G.W. Hastings, eds.), pp 88ff., CRC Press Inc., Boca Raton.Google Scholar
  44. Lazarus, M.D., Cuckler, J.M., Schumacher, H.R., Ducheyne, P., Baker, D.G. 1994. Comparison of the inflammatory response to particulate polymethylmethacrylate debris with and without barium sulphate, J. Orthop. Res. 12, 532–541.CrossRefGoogle Scholar
  45. Lehnartz, E. 1959. Chemical Physiologie, S. 87, Springer-Verlag, Berlin.Google Scholar
  46. Lewis, G. 1989. The fracture toughness of biomaterials: I. Acrylic bone cements, J. Mater. Educ. 11, 429–479.Google Scholar
  47. Lewis, G. 1997. Properties of acrylic bone cement: state of the art review, J. Biomed. Mater. Res.(Appl. Biomater.) 38, 155–182.Google Scholar
  48. Linder, L., Romanus, M. 1976. Acute local tissue effects of polymerizing acrylic bone cement, Clin. Orthop. Relat. Res. 115, 303.Google Scholar
  49. Liu, Y.K., Park, J.B., Njus, G.O., Steinstra, D. 1987. Bone particle impregnated bone cement I. In vitro studies, J. Biomed. Mat. Res. 21, 247.Google Scholar
  50. Looney, M.A., Park, J.B. 1986. Molecular and mechanical property changes during aging of bone cement in vitro and in vivo, J. Biomat. Mater. Res. 20, 555.Google Scholar
  51. Low, R.F., Hulbert, S.F., Sogal, A. 1993. Mechanical properties of hydroxyapatite-polymethyl-methacrylate bone cement composite: hydroxyapatite embedded on surface and throughout cement matrix, in: Bioceramics Vol. 6 (P. Ducheyne, D. Christiansen, eds.), p. 339, Butterworth-Heinemann, London.Google Scholar
  52. Meyer, P.R., Lautenschlager, E.P., Moore, B.K., 1973, On the setting properties of acrylic bone cement, J. Bone Jt. Surg. 55A(1), 149.Google Scholar
  53. Migliaresi, C., Capuana, P. 1990. 2-Hydroxyethylmethacrylate modified bone cement, in: Clinical Implant Materials, Advances in Biomaterials Vol. 9, p. 141, Elsevier, Amsterdam.Google Scholar
  54. Milne, I.S. 1973, Hazards of acrylic bone cement, Anaesthesia 28, 538.Google Scholar
  55. Molino, L.N., Topoleski, L.D.T. 1996. Effect of BaSO4 on the fatigue crack propagation rate of PMMA bone cement, J. Biomed. Mater. Res. 31, 131–137.CrossRefGoogle Scholar
  56. Murakami, A., Behiri, J.C., Bonfield, W. 1988. Rubber-modified bone cement, J. Mater. Sci. 23, 2029.Google Scholar
  57. Nelson, R.C., Hoffman, R.O., Burton, J.A. 1978. The effect of antibiotic addition on the mechanical properties of acrylic cement, J. Biomed. Mater. Res. 12, 473.CrossRefGoogle Scholar
  58. Newens, A.F., Volz, R.G. 1972. Severe hypotension during prosthetic hip surgery with acrylic bone cement, Anesthesiology 36, 298.Google Scholar
  59. Nguyen, N.C., Maloney, W.J., Dauskardt, R.H. 1997. Reliability of PMMA bone cement fixation, fracture and fatigue crack-growth behaviour. J. Mater. Sci., Materials in Medicine 8, 473–483.CrossRefGoogle Scholar
  60. Noble, P.C. 1983. Selection of acrylic bone cements for use in joint replacement, Biomaterials 4, 94.CrossRefGoogle Scholar
  61. Norman, T.L., Kisch, V., Blaha, J.D., Gruen, T.A., Hustosky, K. 1995. Creep characteristics of hand and vacuum mixed acrylic bone cement at elevated stress levels, J. Biomed. Mater. Res. 29, 495–501.CrossRefGoogle Scholar
  62. Oysaed, H. 1990. Dynamic mechanical properties of multiphase acrylic sistems, J. Biomed. Mater. Res. 24, 1037.Google Scholar
  63. Oysaed, H., Ruyter, I.E. 1989. Creep studies of multiphase acrylic systems, J. Biomed. Mater. Res. 23, 719.Google Scholar
  64. Pascual, B., Vázquez, B., Gurruchaga, M., Goñi, I., Ginebra, M.P., Gil, F.J., Planell, J.A., Levenfeld, B., San Román, J. 1996. New aspects of the effect of size and size distribution on the setting parameters and mechanical properties of acrylic bone cement, Biomaterials 17, 509–516.CrossRefGoogle Scholar
  65. Pascual, B., Goñi, I., Gurruchaga, M. 1999a. Characterization of a new acrylic bone cement based on a (methyl methacrylate/1-hydroxypropyl methacrylate) monomer, J. Biomed. Mater. Res. Appl. Biomater. 48, 447–457.CrossRefGoogle Scholar
  66. Pascual, B., Gurruchaga, M., Ginebra, M.P., Gil, F.J., Planell, J.A., Vázquez, B., San Román, J., Goñi I. 1999b. Modified acrylic bone cement with high amounts of ethoxytriethyleneglycol methacrylate, Biomaterials 20(5), 453–463.Google Scholar
  67. Pilliar, R.M., Blackwell, R., MacNab I., Cameron, H.V. 1976. Carbon fiber-reinforced bone cement in orthopaedic surgery, J. Biomed. Mater. Res. 10, 893.CrossRefGoogle Scholar
  68. Pourdeyhimi, B., Wagner, H.D. 1989. Elastic and ultimate properties of acrylic bone cement reinforced with ultra-high-molecular weight polyethylene fibers, J. Biomed. Mater. Res. 23, 63.Google Scholar
  69. Rimnac, C, Wright, T., McGill, D. 1986. The effect of centrifugation on the fracture properties of acrylic bone cements, J. Bone Jt. Surg. 68A, 281.Google Scholar
  70. Sabokbar, A., Fujikawa, Y., Murray, D.W., Athanasou, N.A. 1997. Radio-opaque agents in bone cement increase bone resorption, J. Bone Jt. Surg., Br. Vol. 79B, 129–134.Google Scholar
  71. Saha, S., Pal, S. 1984. Mechanical properties of bone cement: a review, J. Biomed. Mater. Res. 18, 435.CrossRefGoogle Scholar
  72. Saha, S., Pal, S. 1986. Mechanical characterization of commercially made carbon-fiber-reinforced polymethylmethacrylate, J. Biomed. Mater. Res. 20, 817.CrossRefGoogle Scholar
  73. Soltész, U., Ege, W. 1992. Fatigue behavior of different acrylic bone cements, Proceedings of the 4th World Biomaterials Congress, p. 90.Google Scholar
  74. Tanzi, M.C., Sket, I., Gatti, A.M., Monari, E. 1991, Physical characterization of acrylic bone cement cured with new accelerator system, Clin. Mater. 8, 131.Google Scholar
  75. Topoleski, L.D.T., Ducheyne, P., Cuckler, J.M. 1990, A fractographic analysis of in vivo poly(methyl methacrylate) bone cement failure mechanisms, J. Biomed. Mater. Res. 24, 135.CrossRefGoogle Scholar
  76. Topoleski, L.D.T., Ducheyne, P., Cuckler J.M. 1991. Fatigue properties and failure mechanisms of titanium fiber reinforced and pore reduced polymethylmethacrylate bone cement, Proceedings of the 17th Annual Meeting of the Society for Biomaterials, p. 48.Google Scholar
  77. Topoleski, L.D.T., Ducheyne, P., Cuckler, J.M. 1992. The fracture toughness of titanium-fiber reinforced bone cement, J. Biomed. Mater. Res. 26, 1599.CrossRefGoogle Scholar
  78. Trap, B., Wolff, P., Jensen, J.S. 1992. Acrylic bone cements: residuals and extractability of methacrylate monomers and aromatic amines, J. Appl. Biomater. 3, 51.CrossRefGoogle Scholar
  79. Treharne, R.W., Brown, N. 1975. Factors influencing the creep behavior of Poly(methyl methacrylate) cements, J. Biomed. Mater. Res. Symp. 6, 81.Google Scholar
  80. Turner, R.C. 1984. Free radical decay kinetics in PMMA bone cement, J. Biomed. Mater. Res. 18, 467.CrossRefGoogle Scholar
  81. Vázquez, B., Elvira, C., Levenfeld, B., Pascual, B., Goñi, I., Gurruchaga, M, Ginebra, M.P., Gil, F.X., Planell, J.A., Liso, P.A., Rebuelta, M., San Román, J. 1997. Application of new tertiary amines with reduced toxicity to the curing process of acrylic bone cements, J. Biomed. Mater. Res. 34, 129–136.Google Scholar
  82. Vázquez, B., Ginebra, M.P., Gil, F.J., Planell, J.A., López Bravo, A., San Román, J.,1999. Radiopaque acrylic cements prepared with a new acrylic derivative of iodo-quinoline, Biomaterials 20, 2047–2053.Google Scholar
  83. Verdonschot, N., Huiskes, R. 1995. Dynamic creep behavior of acrylic bone cement, J. Biomed. Mater. Res. 29, 575–581.CrossRefGoogle Scholar
  84. Vila, M. M. 1992, Ph.D. Thesis, Universitat Politècnica de Catalunya.Google Scholar
  85. Vila, M.M., Ginebra, M.P., Gil, F.J., Planell, J.A. 1999a. Effect of porosity and environment on the mechanical properties of acrylic bone cement modified with acrylonitrile-butadienestyrene particles: Part I. Fracture toughness, J.Biomed. Mater. Res. (Appl. Biomater.) 48, 121–127.Google Scholar
  86. Vila, M.M., Ginebra, M.P., Gil, F.J., Planell, J.A., 1999b, Effect of porosity and environment on the mechanical properties of acrylic bone cement modified with acrylonitrile-butadiene-styrene particles: Part II. Fatigue crack propagation, J.Biomed. Mater. Res. (Appl. Biomater.) 48, 128–134.Google Scholar
  87. Wang, C.T., Pilliar, R.M. 1989. Fracture toughness of acrylic bone cements, J. Mater. Sci. 24, 3725.Google Scholar
  88. Ward, I.M. 1983. Mechanical properties of solid polymers, 2nd edn., John Wiley & Sons, Bristol.Google Scholar
  89. Willert, H.G., Bertram, H., Buchhorn, G.H. 1990. Osteolysis in alloarthroplasty of the hip: the role of bone cement fragmentation, Clin. Orthop. Relat. Res. 258, 108.Google Scholar
  90. Wixson, R.L. 1992. Do we need to vacuum mix or centrifuge cement?, Clin. Orthop. Relat. Res. 285, 84.Google Scholar
  91. Wright, T.M., Robinson, R.P. 1982. Fatigue crack propagation in polymethylmethacrylate bone cements, J. Mater. Sci. 17, 2463–2468.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Maria-Pau Ginebra
    • 1
  • Francisco-Javier Gil
    • 1
  • Josep-Anton Planell
    • 1
  1. 1.CREB (Biomedical Engineering Research Center), Department of Materials Science and Metallurgical EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations