Advertisement

Knee Joint Replacements

  • Dante Ronca
  • Giuseppe Guida
Chapter

Conclusion

Due to the absence of a unique center of rotation, the knee requires more complex geometry in its prosthetic replacement. The relative motions of the components are a combination of rolling and sliding, so causing a much more complex wear, whose debris remain trapped between articulating surfaces, producing three-body wear. Contact areas smaller than in total hip prosthesis can lead to more pronounced creep and greater possibility of local fatigue cracks developing. Where there is severe loss of articular cartilage but the normal bony structure is preserved, procedures that involve lowest resection of bone from both the femur and the tibia must be utilized, because the implant designs that require a great deal of excavation, so producing large cavities in the femur and in the tibia, leave relatively insufficient bone stock for revision or arthrodesis. Long stems require a large amount of intramedullary cement for fixation that may create difficulties in case of infection. If a prosthetic component becomes loose, the cement attached to it may abrade and destroy the surrounding bone and create an even larger cavity, which makes revision impossible or arthrodesis difficult to achieve. Finally, it is essential to restore the normal tibiofemoral valgus angle, because an eccentrically loaded tibial component on either the medial or lateral aspect can produce uneven wear and early loosening. So, jigs and guides which make it as easy as possible to resect the bone surfaces with precision have to be available. At present, there is a multitude of implants on the market. The selection of a prosthesis depends on many factors, including the surgeon’s preference and his familiarity with the device.

Keywords

Total Knee Arthroplasty Femoral Component Tibial Plateau Contact Stress Total Knee Replacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth, R., Farling, G., Bardos, D. 1977. An improved bearing material for joint replacement prostheses: Carbon fiber reinforced UHMW polyethylene, Trans Orthop. Res. Soc. 2, 120.Google Scholar
  2. Ambrosio, L., Carotenuto, G., Nicolais, L., Ronca, D. 1996. Degradation of explanted UHMW-PE components prostheses. Biomaterials 10(1–2), 15–23.Google Scholar
  3. Andriacchi, T.P., Galante, J.O., Fermier, B.S. 1982. The influence of total knee replacement design on walking and stair climbing, J. Bone Jt. Surg. 64A, 1328–1335.Google Scholar
  4. Bargren, J.H., Blaha, J.D., Freeman, M.A.R. 1983. Alignment in total knee arthroplasty: correlated biomechanical and clinical observations, Clin. Orthop. 173, 178–183.Google Scholar
  5. Bartel, D.L., Burstein, A.H., Santavicca, E.A., Insall, J.N. 1982. Performance of the tibial component in total knee replacement, J. Bone Jt. Surg. 64A, 1026–1033.Google Scholar
  6. Bartel, D.L., Burstein, A.H., Toda, M.D, Edwards, D.L. 1985. The effects of conformity and plastic thickness on contact stress in metal-backed plastic implants, J. Biomech. Eng. 107, 193–199.CrossRefGoogle Scholar
  7. Bartel, D.L., Bicknell, V.L., Wright, T.M. 1986. The effect of conformity, thickness and material stresses in ultra-high molecular weight components for total joint replacement, J. Bone Jt. Surg. 68A, 1041–1051.Google Scholar
  8. Bartel, D.L., Rawlinson, J.J., Burstein, A.H., Ranawatt, C.S., Flynn, W.F. 1995. Stresses in polyethylene components of contemporary total knee replacements, Clin. Orthop. 317, 76–82.Google Scholar
  9. Batheja, S.K., Andrews, E.H., Yarbrough, S.M. 1989. Radiation induced crystallinity in linear polyethylenes: Long term aging effects, Polym. J. 21, 739–750.Google Scholar
  10. Bayley, J.C., Scott, R.D., Ewald, F.C, Holmes, G.B. Jr. 1988. Metal-backed patellar component failure following total knee replacement, J. Bone Jt. Surg. 70A, 668–674.Google Scholar
  11. Binderglass, D.F., Cohen, J.L., Dorr, L.D. 1993. Patellar tilt and subluxation in total knee arthroplasty. Relationship to pain, fixation and design. Clin. Orthop. 286, 103–109.Google Scholar
  12. Blaha, J.D., Insler, H.P., Freeman, M.A.R. 1982. The fixation of a proximal tibial polyethylene prosthesis without cement, J. Bone Jt. Surg. 64B, 326–335.Google Scholar
  13. Blunn, G.W., Walker, P.S., Joshi, A., Hardinge, K. 1991. The dominance of cyclic sliding in producing wear in total knee replacements, Clin. Orthop. 273, 253–260.Google Scholar
  14. Cates, H.E., Ritter, M.A., Keating, E.M., Faris, P.M. 1993. Intramedullary versus extramedullary femoral alignment systems in total knee replacement. Clin. Orthop. 286, 32–39.Google Scholar
  15. Charnley, J. 1960. Anchorage of the femoral head prosthesis to the shaft of the femur, J. Bone Jt. Surg. 42B, 28–30.Google Scholar
  16. Charnley, J. 1970. Low friction arthroplasty, Clin. Orthop. 72, 7–21.Google Scholar
  17. Connelly, G.M., Rimnac, C.M., Wright, T.M., Hertzberg, R.W., Manson, J.A. 1984. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene, J. Orthop. Res. 2, 119–125.CrossRefGoogle Scholar
  18. Coventry, M.B., Finerman, G.H., Riley, L.H., Turner, R.H., Upshaw, J.E. 1972. A new geometric knee for total knee arthroplasty, Clin. Orthop. 83, 157–162.Google Scholar
  19. Denham, R.A, Bishop, R.E.D. 1978. Mechanics of the knee and problems in reconstructive surgery, J. Bone Jt. Surg. 60B, 308–309.Google Scholar
  20. Engelbrecht, E., Zippel, J. 1973. The sledge prosthesis “Model St. Georg”. Acta Orthop. Belg. 39, 203–209.Google Scholar
  21. Feng, E.L., Stulberg, D.S., Wixon, R.S. 1995. Progressive subluxation and polyethylene wear in total knee replacements with flat articular surfaces, Clin. Orthop. 205, 43–48.Google Scholar
  22. Figgie, H.E., Goldberg, V.M., Heiple, K.G., Moller, H.S., Gordon, N.H. 1989. The influence of tibial-patellofemoral location on function of the knee in patients with posterior stabilized condylar knee prostheses, J. Bone Jt. Surg. 68A, 1035–1040.Google Scholar
  23. Font-Rodriguez, D.E., Scuderi, G.R., Insall, J.N. 1997. Survivorship of cemented total knee arthroplasty, Clin. Orthop. 345, 79–86.Google Scholar
  24. Freeman, M.A.R., Swanson, S.A., Tood, R. 1973. Total replacement of the knee using the Freeman-Swanson knee prosthesis, Clin. Orthop. 94, 153–170.Google Scholar
  25. Glück, T. 1890. Die invaginationsmethode der osteo-und arthroplastik, Berl. Klin. Wochenschr. Circulation 33, 752.Google Scholar
  26. Goodfellow, J., O’Connor, J., 1978. The mechanics of the knee and the prosthesis design, J. J. Bone Jt. Surg. 60B, 358–369.Google Scholar
  27. Gunston, F.H. 1973. Polycentric knee arthroplasty, Clin. Orthop. 94, 128–135.Google Scholar
  28. Hirakawa, K., Bauer, T.W., Stulberg, B.N., Wilde, A.H., Borden, L.S. 1996. Characterization of debris adjacent to failed knee implants of 3 different designs, Clin. Orthop. 331, 151–158.Google Scholar
  29. Insall, J.N., Walker, P. 1976. Unicondylar knee replacement, Clin. Orthop. 120, 83–85.Google Scholar
  30. Insall, J.N., Ranawat, C.S., Scott, W.N., Walker, P. 1976a. Total condylar replacement-Preliminary report, Clin. Orthop. 120, 149–154.Google Scholar
  31. Insall, J.N., Ranawat, C.S., Aglietti, P., Shine, J. 1976b. A comparison of four models of total knee-replacement prostheses, J. Bone Jt. Surg. 58A, 754–765.Google Scholar
  32. Jones, B.C., Insall, J.N., Inglis, A.E., Ranawat, C.S. 1979. GUEPAR knee arthroplasty results and late complications, Clin. Orthop. 140, 145–152.Google Scholar
  33. Jones, W.N., Aufranc, O.E., Kermond, W.L. 1967. Mould arthroplasty of the knee, J. Bone Jt. Surg. 49A, 1022.Google Scholar
  34. Judet, J., Judet, R., Crepin, G.T. 1947. Essais de prothèse ostéoarticulaire, Presse Med. 52, 302.Google Scholar
  35. Kettelkamp, D.B., Nasca, R. 1973. Biomechanics and knee replacement arthroplasty, Clin. Orthop. 94, 8–14.Google Scholar
  36. Knutson, K., Lewold, S., Robertsson, O., Lidgren, L. 1994. The Swedish knee arthroplasty register, Acta Orthop. Scand. 65, 375–386.Google Scholar
  37. Lavai, J.P., McLeod, H.C., Freeman, M.A.R. 1983. Why not resurface the patella? J. Bone Jt. Surg. 65B, 448–451.Google Scholar
  38. Lewis, P.L., Rorabeck, C.H., Bourne, R.B. 1995. Screw osteolysis after cementless total knee replacement, Clin. Orthop. 321, 173–177.Google Scholar
  39. Li, E., Ritter, M.A. 1995. Total knee arthroplasty, J. Arthroplasty 10, 560–563.CrossRefGoogle Scholar
  40. MacIntosh, D. 1958. Hemiarthroplasty of the knee using a space occupying prosthesis for painful varus and valgus deformities, J.Bone Jt. Surg. 40A, 1431.Google Scholar
  41. MacIntosh, D.L. 1966. Arthroplasty of the knee, J. Bone Jt. Surg. 48B, 179.Google Scholar
  42. Manley, M.T., Kotzar, G., Stern, L.S., Wilde, A. 1987. Effects of repetitive loading on the integrity of porous coatings, Clin. Orthop. 217, 293–302.Google Scholar
  43. Maquet, P. 1967. Biomechanique du genou et gonarthrose, Rev. Chir. Orthop. 53, 111–138.Google Scholar
  44. Marmor, L. 1973. The modular knee, Clin. Orthop. 94, 242–248.Google Scholar
  45. Marmor, L. 1988. Unicompartmental arthroplasty of the knee with a minimum ten-year follow-up period, Clin. Orthop. 228, 171–177.Google Scholar
  46. Matthews, L.S., Sonstengard, D.A., Kaufer, H. 1973. The spherocentric knee, Clin. Orthop. 94, 234–241.Google Scholar
  47. McKee, G.K, Watson-Farrar, J. 1966. Replacement of arthritic hips by the McKee-Farrar prosthesis, J. Bone Jt. Surg. 48B, 245–249.Google Scholar
  48. McKeever, D. 1960, Tibial plateau prosthesis, Clin. Orthop. 18, 86–95.Google Scholar
  49. Miller, R.C. 1991. UHMW polyethylene, Modern Plastic, Mid-October Encyclopaedia Issue 67.Google Scholar
  50. Mochizuki, R.M., Schurman, D.J. 1979. Patellar complications following total knee arthroplasty. J. Bone Jt. Surg. 61A, 879–883.Google Scholar
  51. Morrey, B.F., Chao, E.Y.S. 1988. Fracture of the porous-coated metal tray of a biologically fixed knee prosthesis: Report of a case, Clin. Orthop. 228, 182–189.Google Scholar
  52. Murray, R.P., Hayes, W.C., Edwards, W.T., Harry, J.D. 1984. Mechanical properties of the subchondral plate and the metaphyseal shell, Trans. 30th Orthop. Res. Soc. 9, 197.Google Scholar
  53. Nolan, J.F., Bucknill, T.M. 1992. Aggressive granulomatous from polyethylene failure in an uncemented knee replacement. J. Bone Jt. Surg. 74B, 23–24.Google Scholar
  54. Pillar, R.M., Lee, J.M., Maniatopoulos, C. 1986. Observations on the effect of movement on bone ingrowth into porous-surfaced implants, Clin. Orthop. 208, 108–113.Google Scholar
  55. Ranawat, C.S. 1986. The patellofemoral joint in total condylar knee arthroplasty. Pros and cons based on five-to ten-year follow-up observations, Clin. Orthop. 205, 93–99.Google Scholar
  56. Ranawat, C.S., Rose, H.A. 1983. Total-condylar knee arthroplasty-A three to eight year follow-up, Proceedings of the American Academy of Orthopaedic Surgeons, Annual Meeting, Los Angeles, California.Google Scholar
  57. Ranawat, C.S., Wilde, A.H., Rover, G.D. 1976. Experience with the GUEPAR total knee prosthesis, Orthop. Rev. 5, 47–53.Google Scholar
  58. Ranawat, C.S., Flynn, W.F., Deshmukh, R.G. 1994. Impact of modern technique on long-term results of total condylar knee arthroplasty, Clin. Orthop. 309, 131–135.Google Scholar
  59. Riley, L.H. Jr. 1976. The evolution of total knee arthroplasty, Clin. Orthop. 120, 7–10.Google Scholar
  60. Rimnac, C.M., Klein, R.W., Betts, F., Wright, T.M. 1994. Post-irradiation aging of ultra-high molecular weight polyethylene, J. Bone Jt. Surg. 76A, 1052–1056.Google Scholar
  61. Ritter, M.A., Herbst, S.A., Keating, E.M., Faris, P.M., Meding, J.B. 1994. Long term survival analysis of a posterior cruciate retaining total condylar total knee arthroplasty, Clin. Orthop. 309, 136–145.Google Scholar
  62. Ritter, M.A., Worland, R., Saliski, J., Helphenstine, J.V., Edmondson, K.L., Keating, E.M., Faris, P.M, Meding, J.B. 1995. Flat-on-flat, nonconstrained compression molded polyethylene total knee replacement, Clin. Orthop. 321, 79–85.Google Scholar
  63. Stulberg, S.D., Stulberg, B.N., Hamati, Y., Tsao, A. 1988. Failure mechanism of metal-backed patellar component, Clin. Orthop. 236, 88–105.Google Scholar
  64. Tanner, M.G., Whiteside, L.A., White, S.E. 1995. Effect of polyethylene quality on wear in total knee arthroplasty, Clin. Orthop. 317, 83–88.Google Scholar
  65. Tew, M. and Waugh, W. 1985. Tibiofemoral alignment and results of knee replacement. J. Bone Jt. Surg. 67B, 551–556.Google Scholar
  66. Tria, A.J., Harwood, D.A., Alicea, J.A., Cody, R.P. 1994. Patellar fractures in posterior stabilized knee arthroplasty, Clin. Orthop. 299, 131–138.Google Scholar
  67. Walker, P.S. 1978. Human Joints and Their Artificial Replacements, Charles C. Thomas, Springfield, Illinois.Google Scholar
  68. Walldius, B. 1954. Arthroplasty of the knee joint using an acrylic prosthesis, Acta Orthop. Scand. 23, 121–131.Google Scholar
  69. Wasielewski, R.C., Parks, N., Williams, I., Surprenant, H., Collier, J.P., Engh, G. 1997. Tibial insert undersurface as a contributing source of polyethylene wear debris, Clin. Orthop. 345, 53–59.Google Scholar
  70. Weightman, B., Light, D.A. 1985. A comparison of RCH 1000 and Hi-Fax 1900 ultra-high molecular weight polyethylene, Biomaterials 6, 177–183.CrossRefGoogle Scholar
  71. White, S.E., Paxson, R.D., Tanner, M.G., Whiteside, L.A. 1996. Effects of sterilisation on wear in total knee arthroplasty, Clin. Orthop. 331, 164–171.Google Scholar
  72. Whiteside, L.A. 1986. Wear in total knee arthroplasty, in: Biological Material and Mechanical Consideration of Joint Replacement (B.F. Morrey, ed.), pp. 253–260, Raven Press, New York.Google Scholar
  73. Windsor, R.E., Scuderi, G.R., Moran, M., Insall, J.N. 1989. Mechanism of failure of the femoral and tibial components in total knee arthroplasty, Clin. Orthop. 248, 15–23.Google Scholar
  74. Winter, D.A. 1983. Energy generation and absorption at the ankle and knee during fast, natural and slow cadences, Clin. Orthop. 175, 147–154.Google Scholar
  75. Wright, T.M. American Association of Orthopaedic Surgeons course. 1991. Total Knee Arthroplasty, Orlando, Florida, October.Google Scholar
  76. Wright, T.M., Fukubayashi, T., Burstein, A.H. 1981. The effect of carbon fiber reinforcement on contact area, contact pressure and time dependent deformation in polyethylene tibial components, J. Biomed. Mater. Res. 15, 719–730.CrossRefGoogle Scholar
  77. Wright, T.M., Burstein, A.H., Bartel, D.L. 1985. Retrieval analysis of total joint replacement components: a six-year experience, in: Proceedings of Second Symposium on Corrosion and Degradation of Implant Materials, pp. 415–428, American Society for Testing and Materials, Philadelphia.Google Scholar
  78. Wroblewski, B.M. 1979. Wear of high-density polyethylene on bone and cartilage, J. Bone Jt. Surg. 61B, 498–500.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Dante Ronca
    • 1
  • Giuseppe Guida
    • 1
  1. 1.Istituto di Clinica OrtopedicaUniversitá di NapoliNapoliItaly

Personalised recommendations