Hip Joint Prosthesis

  • Giuseppe Guida
  • Dante Ronca


Femoral Component Acetabular Component Femoral Stem Bone Ingrowth Porous Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambrosio, L., Caprino, G., Nicolais, L., Nicodemo, L., Huang, S.J., Guida, G., Ronca, D. 1987. Composite materials for bone fracture fixation, Compos. Struct. 4, 2337–2344.Google Scholar
  2. Ambrosio, L., De Santis, R., Nicolais, L., Ronca, D., Guida, G. 1996. Protesi d‘anca in materiale composito, G.I.O.T. 22(suppl. 1), 475–480.Google Scholar
  3. Amstutz, H.C. 1981. Materials and stem design of total hip replacement, Orthop. Trans. 3, 357–364.Google Scholar
  4. Amstutz, H.C., Clarke, I.C., Christie, J., Graff-Radford, A. 1977. Total hip articular replacement by internal eccentric shells, Clin. Orthop. 128, 261–284.Google Scholar
  5. Andriacchi, T.P., Galante, J.O., Belytschko, T.B., Hampton, S. 1976. A stress analysis of the femoral stem in total hip prostheses, J. Bone Jt. Surg. 58A, 618–628.Google Scholar
  6. Apel, D.M., Smith, D.G., Schwartz, C.M., Paprosky, W.G. 1989. Threaded cup acetabuloplasty: early clinical experience, Clin. Orthop. 241, 183–189.Google Scholar
  7. Balderston, R.A., Rothman, R.H., Booth, R.E., Hozack, W.J. 1992. The Hip, Lea & Febriger, Malvern, PA.Google Scholar
  8. Berry, D.J., Chao, E.Y.S. 1996. Cemented femoral components, in: Reconstructive Surgery of the Joints (B.F. Morrey, ed.), pp. 943–960, Churchill Livingstone, New York.Google Scholar
  9. Bobyn, J.D., Pilliar, R.M., Cameron, H.V., Weatherly, G.C. 1980. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone, Clin. Orthop. 150, 263–270.Google Scholar
  10. Bobyn, J.D., Pilliar, R.M., Cameron, M.U., Weatherly, G.C. 1981. Osteogenic phenomena across endosteal bone implant spaces with porous-surfaced intramedullary implants, Acta Orthop. Scand. 52, 145–153.Google Scholar
  11. Bobyn, J.D., Jacobs, J.J., Tanzer, M., Urban, R.M., Aribindi, R., Summer, D.R., Turner, T.M., Brooks, C.E. 1995. The susceptibility of smooth implant surfaces to perimplant fibrosis and migration of polyethylene wear debris, Clin. Orthop. 311, 21–39.Google Scholar
  12. Bobyn, J.D., Tanzer, M., Miller, J.E. 1996. Fundamental principles of biologic fixation, in: Reconstructive Surgery of the Joints (B.F. Morrey, ed.), pp. 75–94, Churchill Livingstone, New York.Google Scholar
  13. Capello, W.N. 1989. Fit the patient to the prosthesis. An argument against the routine use of custom hip implants, Clin. Orthop. 249, 56–59.Google Scholar
  14. Carter, D.R., Vasu, R., Harris, W.H. 1982. Stress distributions in the acetabular region-II. Effects of cement thickness and metal backing of the total hip acetabular component, J. Biomech. 15, 165–170.CrossRefGoogle Scholar
  15. Charnley, J. 1961. Arthroplasty of the hip: a new operation, Lancet 1, 1129.Google Scholar
  16. Chmel, M.J., Rispler, D., Poss, R. 1995. The impact of modularity in total hip arthroplasty, Clin. Orthop. 319, 77–84.Google Scholar
  17. Collier, J.P., Bauer, T.W., Bloebanm, R.D. 1992a. Results of implant retrieval from postmortem specimens in patients with well-functioning, long-term total hip replacement, Clin. Orthop. 274, 97–112.Google Scholar
  18. Collier, J.P., Mayor, M.B., Chae, J.C. 1992b. Mechanism of failure of modular prostheses, Clin. Orthop. 285, 129–139.Google Scholar
  19. Collier, J.P., Surprenant, V.A., Jensen, R.E. 1992c. Corrosion between the components of modular femoral hip prostheses, J. Bone Jt. Surg. 74B, 511–517.Google Scholar
  20. Cook, S.D., Barrack, R.L., Thomas, K.A., Haddad, R.J. 1988a. Quantitative analysis of tissue growth into human porous total hip components, J. Arthroplasty 3, 249–262.CrossRefGoogle Scholar
  21. Cook, S.D., Thomas, K.A., Haddad, R.J. Jr. 1988b. Histologic analysis of retrieved human porous-coated total joint components, Clin. Orthop. 234, 90–101.Google Scholar
  22. Cook, S.D., Barrack, R.L., Thomas, K.A. 1991. Tissue growth into porous primary and revision femoral stems, J. Arthroplasty 6 (suppl.), 37–46.CrossRefGoogle Scholar
  23. Cook, S.D., Barrack, R.L., Gregory, C.B. 1994. Wear and corrosion of modular interfaces in total hip replacements, Clin. Orthop. 298, 80–88.Google Scholar
  24. Cooney, W.P. III, Beckenbauen, R.D., Linscheid, R.L. 1984. Total wrist arthroplasty, Clin. Orthop. 187, 121–128.Google Scholar
  25. Coventry, M.B. 1991. Historical perspective of hip arthroplasty, in: Reconstructive Surgery of the Joints (B.F. Morrey, ed.), pp. 875–882, Churchill Livingstone, New York.Google Scholar
  26. Coventry, M.B., Finermann, G.A.M., Riley, L.N., Turner, R.H., Upshaw, J.E. 1972. A new geometric knee for total knee arthoplasty, Clin. Orthop. 83, 157–162.Google Scholar
  27. Crowninshield, R.D., Tolbert, J.R. 1983. Cement strain measurement surrounding loose and well-fixed femoral component stems, J. Biomat. Res. 17, 819–828.Google Scholar
  28. Crowninshield, R.D., Johnston, R.C., Andrews, J.G., Brand, R.A. 1978. A biomechanical investigation of the human hip, J. Biomech. 11, 75–85.CrossRefGoogle Scholar
  29. Crowninshield, R.D., Brand, R.A., Johnston, R.C., Milroy, J.C. 1980. The effect of femoral stem cross-sectional geometry on cement stresses in total hip reconstruction, Clin. Orthop. 146, 71–77.Google Scholar
  30. Crowninshield, R.D., Hawkins, M., Price, H. 1985. Poly(methylmethacrylate) precoating of orthopaedic implants, in: Advanced Concepts in Total Hip Replacement (W.H. Harris, ed.), pp. 67–78, Slack Inc., Thorofare, N.J.Google Scholar
  31. Cuckler, J.M., Bearcroft, J., Asgian, C.M. 1995. Femoral head technologies to reduce polyethylene wear in total hip arthroplasty, Clin. Orthop. 317, 57–63.Google Scholar
  32. D‘Antonio, J.A., Capello, W.N., Jaffe, W.L. 1992. Hydroxyapatite-coated hip implant: multicenter three-year clinical and roentgenographic results, Clin. Orthop. 285, 102–115.Google Scholar
  33. Duparc, J., Massin, P. 1992. Results of 203 total hip replacement using a smooth, cementless femoral component, J. Bone Jt. Surg. 74B, 251–256.Google Scholar
  34. Engh, C.A., Bobyn, J.D. 1987. The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty, Clin. Orthop. 231, 7–28.Google Scholar
  35. Engh, C.A., Bobyn, J.D., Glassman, A.H. 1987. Porous coated hip replacement, J. Bone Jt. Surg. 69B, 45–55.Google Scholar
  36. Engh, C.A., Hooten, J.P., Zettl-Schaffer, K.F., Ghaffarpour, M., McGovern, T.F., Bobyn, J.D. 1995. Evaluation of bone ingrowth in proximally and extensively porous-coated anatomic medullary locking prostheses retrieved at autopsy, J. Bone Jt. Surg. 77A, 903–910.Google Scholar
  37. Fowler, J.L., Gie, G.A., Lee, A.J.C., Ling, R.S.M. 1988. Experience with the Exeter total hip replacement since 1970, Orthop. Clin. North Am. 19, 477–489.Google Scholar
  38. Freeman, M.A.R., Cameron, H.U., Brown, G.C. 1978. Cemented double cup arthroplasty of the hip: a 5 year experience with ICLH prosthesis, Clin. Orthop. 134, 45–52.Google Scholar
  39. Galante, J.O., Rostoker, W., Lueck, R., Ray, R.D. 1971. Sintered fiber metal composites as a basis for attachment of implant to bone, J. Bone Jt. Surg. 53A, 101–114.Google Scholar
  40. Geesink, R.G.T., De Groot, K., Klein, C.P.A.T. 1987. Chemical implant fixation using hydroxyl-apatite coatings: the development of a human total hip prothesis for chemical fixation to bone using hydroxyl-apatite coatings on titanium substrates, Clin. Orthop. 225, 147–170.Google Scholar
  41. Gerard, Y., Ségal, P., Bedoucha, J.S. 1974. L’arthroplastie de la hanche par cupules couplées, Rev. Chir. Orthop. 60(suppl. 2), 281–289.Google Scholar
  42. Gunston, F.H. 1971. Polycentric knee arthroplasty: prosthetic simulation of normal knee movement, J. Bone Jt. Surg. 53B, 272–277.Google Scholar
  43. Hahn, H., Palich, W. 1970. Preliminary evaluation of porous metal surfaced titanium for orthopedic implants, J. Biomed. Mater. Res. 4, 571–577.CrossRefGoogle Scholar
  44. Harris, W.H. 1985. The Harris precoat total hip replacement system, in: Advanced Concepts in Total Hip Replacement (W.H. Harris, ed.), pp. 85–98, Slack Inc., Thorofare, N.J.Google Scholar
  45. Haynes, D.R., Rogers, S.D., Ha, Y.S. 1993. The differences in toxicity and release of boneresorbing mediators induced by titanium and cobalt-chromium alloy wear particles, J. Bone J. Surg. 75A, 825–834.Google Scholar
  46. Howie, D.W. 1990. Tissue response in relation to type of wear particles around failed hip arthroplasties, J. Arthroplasty 5, 337–348.Google Scholar
  47. Huiskes, R., Weinans, H., van Rietbergen, B. 1992. The relationship between stress shielding and bone resorption around total hip stems and the effect of flexible materials, Clin. Orthop. 274, 124–134.Google Scholar
  48. Isaac, G.H., Wroblewsky, B.M., Atkinson, J.R., Dowson, D. 1992. A tribological study of retrieved hip prostheses, Clin. Orthop. 276, 115–125.Google Scholar
  49. Jacobs, J.J., Urban, R.M., Gilbert, J.L., Skipor, A.K., Black, J., Jasty, M., Galante, J.O. 1995. Local and distant products from modularity, Clin. Orthop. 319, 94–105.Google Scholar
  50. Jasty, M., Rubash, H.E., Paiement, G.D., Bragdon, C.R., Parr, J., Harris, W.M. 1992. Porous-coated uncemented components in experimental total hip arthroplasty in dogs: effect of plasma-sprayed calcium phosphate coatings on bone ingrowth, Clin. Orthop. 280, 300–309.Google Scholar
  51. Jones, L.C., Hungerford, D.S. 1987. Cement disease, Clin. Orthop. 225, 192–206.Google Scholar
  52. Judet, J., Judet, R. 1950. The use of an artificial femoral head for arthroplasty of the hip joint, J. Bone Jt. Surg. 32B, 166–173.Google Scholar
  53. Judet, R., Siguier, M., Brumpt, D., Judet, Th. 1978. Prothése totale de hanche en poro-metal sans ciment, Rev. Chir. Orthop. 64(suppl. 2), 14–21.Google Scholar
  54. Kang, J.D., McKerman, D.J., Kruger, M. 1991. Ingrowth and formation of bone in defects in an uncemented fiber-metal total hip replacement model in dogs (Review), J. Bone Jt. Surg. 73A, 93–105.Google Scholar
  55. Knahr, M., Salzer, M., Frank, P. 1984. Experience with uncemented polyethylene acetabular prostheses, in: The Cementless Fixation of Hip Endoprostheses (E.W. Morscher, ed.), pp. 205–210, Springer-Verlag, Heidelberg.Google Scholar
  56. Lee, A.J.C., Ling, R.S.M. 1974. A device to improve the extrusion of bone cement into the bone of the acetabulum in the replacement of the hip joint, Biomed. Eng. 9, 522–524.Google Scholar
  57. Lee, J.M., Salvati, E.A., Belts, F. 1992. Size of metallic and polyethylene debris particles in failed cemented total hip replacements, J. Bone Jt. Surg. 74B, 380–384.Google Scholar
  58. Lewis, J.L., Askew, M.J., Wixson, R.L., Kramer, G.M., Tarr, R.R. 1984. The influence of prosthetic stem stiffness and a calcar collar on stresses in the proximal end of the femur with a cemented femoral component, J. Bone Jt. Surg. 66A, 280–286.Google Scholar
  59. Lexer, E. 1908. Uber Gelenktransportation, Med. Klin. 4, 817–820.Google Scholar
  60. Linder, L., Hansson, H.A. 1983. Ultra-structural aspects of the interface between bone and cement in man, J. Bone Jt. Surg. 65B, 646–649.Google Scholar
  61. Ling, R.S.M. 1992. Clinical experience with primary cemented total hip arthroplasty, Chir. Org. Mov. 77, 373–381.Google Scholar
  62. Lord, G.A, Hardy, J.R., Kummer, F.J. 1979. An uncemented total hip replacement experimental study and review of 300 madreporique arthroplasties, Clin. Orthop. 141, 2–16.Google Scholar
  63. Luo Zong-Ping. 1996. Finite element analysis theoretical prediction of bony response to joint replacement, in: Reconstructive Surgery of the Joints (B.F. Morrey, ed.), pp. 13–18, Churchill Livingstone, New York.Google Scholar
  64. Markolf, K.L., Amstutz, H.C., Hirscholwitz, D.L. 1980. The effect of calcar contact on femoral component micromovement, J. Bone Jt. Surg. 62A, 1315–1323.Google Scholar
  65. Mathiesen, E.B., Lingren, J.U., Blomgren, G.G. 1991. Corrosion of modular hip prostheses, J. Bone Jt. Surg. 73B, 569–575.Google Scholar
  66. Mathys, R., Mathys, R. Jr. 1984. The use of polymers for endoprosthetic components, in: The Cementless Fixation of Hip Endoprostheses (E.W. Morscher, ed.), pp. 71–80, Springer-Verlag, Heidelberg.Google Scholar
  67. McKee, G.K., Watson-Farrar, J. 1966. Replacement of arthritic hips by the McKee-Farrar prosthesis, J. Bone Jt. Surg. 48B, 245–259.Google Scholar
  68. McKellop, H.A., Campbell, P., Sang-Hyun, P. 1995. The origin of submicron polyethylene wear debris in total hip arthroplasty, Clin. Orthop. 311, 3–20.Google Scholar
  69. Miller, J., Ahmed, A.M. 1985. Precoating-concept and results of testing, in: Advanced Concepts in Total Hip Replacement (W.E. Harris, ed.), pp. 79–84, Slack Inc., Thorofare, N.J.Google Scholar
  70. Mittelmeier, H. 1974. Zementlose verankerung von Endoprothesen nach dem Tragrippemprin-zip, Z. Orthop. 112, 27–33.Google Scholar
  71. Moore, A.T., Bohlman, H.R. 1943. Metal hipjoint: a case report, J. Bone Jt. Surg. 25, 688–693.Google Scholar
  72. Morrey, B.F., Adams, R.A. 1996. The elbow: Semiconstrained devices, in: Reconstructive Surgery of the Joints (B.F. Morrey, ed.), Churchill Livingstone, New York.Google Scholar
  73. Morscher, E.W., Dick, W., Kermen, V. 1982. Cementless fixation of polyethylene acetabular component in total hip arthroplasty, Arch. Orthop. Surg. 99, 223–230.Google Scholar
  74. Muller, M.E. 1970. Total hip prosthesis, Clin. Orthop. 72, 46–68.Google Scholar
  75. Muller, M.E. 1995. The benefits of metal on metal total hip replacements, Clin. Orthop. 311, 54–59.Google Scholar
  76. Neer, C.S. II. 1955. Articular replacement for the humerale head, J. Bone Jt. Surg. 37A, 215–228.Google Scholar
  77. Neer, C.S. II. 1964. Articular replacement for the humerale head, J. Bone Jt. Surg. 46A, 1607–1610.Google Scholar
  78. Neer, C.S. II. 1974. Replacement arthroplasty for glenohumeral osteo-arthritis, J. Bone Jt. Surg. 56A, 1–13.Google Scholar
  79. Neer, C.S. II, Watson, K.L., Stanton, F.J. 1982. Recent experience in total shoulder replacement, J. Bone Jt. Surg. 64A, 319–337.Google Scholar
  80. Ohlin, A., Johnel, O., Lerner, U.H. 1990. The pathogenesis of loosening of total hip arthro-plasties. The production of factors by periprosthetic tissues that stimulate in vitro bone resorption, Clin. Orthop. 253, 287–296.Google Scholar
  81. Oonishi, H., Yamamoto, M., Ishimaru, H. 1989. The effect of hydroxyapatite coating on bone growth into porous titanium alloy implants, J. Bone Jt. Surg. 71B, 213–216.Google Scholar
  82. Paltrinieri, M., Trentani, C.A. 1971. Variante di artroprotesi d’anca, Chir. Org. Mov. LX, Fasc. II 60, 85–95.Google Scholar
  83. Parhoferf, R., Monch, W. 1984. Experience with revision arthroplastics for failed cemented total hip replacements using uncemented Lord and PM prostheses, in: The Cementless Fixation of Hip Endoprostheses (W.H. Harris, ed.), pp. 275–278, Slack Inc., Thorofare, N.J.Google Scholar
  84. Pedersen, D.R., Crowninshield, R.D., Brand, R.A., Johnston, R.C. 1982. An axisymmetric model of acetabular components in total hip arthroplasty, J. Biomech. 15, 305–315.CrossRefGoogle Scholar
  85. Pidhorz, L.E., Urban, R.M., Jacobs, J.J. 1993. A quantitative study of bone and soft tissues in cementless porous-coated acetabular components retrieved at autopsy, J. Arthroplasty 8, 213–225.Google Scholar
  86. Pilliar, R.M., Cameron, H.U., Macnab, I. 1975. Porous surface layered prosthetic devices, Biomed. Eng. 10, 126–131.Google Scholar
  87. Pilliar, R.M., Lee, J.M., Maniatopolous, S.C. 1986. Observation on the effect of movement on bone ingrowth into porous-surfaced implants, Clin. Orthop. 208, 108–113.Google Scholar
  88. Raab, S., Ahmed, A.M., Provan, J.W. 1981. The quasistatic and fatigue performance of the implant/bone cement interface, J. Biomat. Res. 15, 159–182.Google Scholar
  89. Robertson, D.M., Pierre, L.M., Chahal, R, 1976. Preliminary observations of bone ingrowth into porous materials, J. Biomed. Mater. Res. 10, 335–344.CrossRefGoogle Scholar
  90. Sandborn, P.M., Cook, S.D., Anderson, R.C. 1987. The effect of surgical fit on bone growth into porous-coated implants, Trans. Orthop. Rec. Soc. 12, 217–222.Google Scholar
  91. Sandborn, P.M., Cook, S.D., Spires, S.W., Kester, M.A. 1988. Tissue response to porous-coated implants lacking initial bone apposition, J. Arthroplasty 3, 337–346.Google Scholar
  92. Santavirta, S., Konttinen, Y.T., Bergroth, V., Eskola, A., Tallroth, K., Lindholm, T.S. 1990. Aggressive granulomatous lesions associated with hip arthroplasty. Immunopathological studies, J. Bone Jt. Surg. 72A, 252–258.Google Scholar
  93. Schmalzried, T.P., Jasty, M., Harris, W.H. 1992. Periprosthetic bone loss in total hip arthroplasty: Polyethylene wear debris and the concept of the effective joint space, J. Bone Jt. Surg. 74A, 849–863.Google Scholar
  94. Shaw, J.A., Bailey, J.H., Bruno, A., Greer, R.B. 1990. Threaded acetabular components for primary and revision total hip arthroplasty, J. Arthroplasty 5, 201–215.Google Scholar
  95. Smith-Petersen, M.N. 1939. Arthroplasty of the hip: a new method, J. Bone Jt. Surg. 21, 269–288.Google Scholar
  96. Sobelle, K., Toksvig-Larsen, S. Gelineck, J. 1993. Migration of hydroxyapatite coated femoral prostheses: a roentgen stero-photogrammetric study, J. Bone Jt. Surg. 75B, 681–687.Google Scholar
  97. Stauffer, R.N., Segal, N.M. 1981. Total knee arthroplasty: four years’ experience, Clin. Orthop. 160, 217–221.Google Scholar
  98. Swanson, A.B. 1973. Flexible Implant Resection Arthoplasty in the Hand and Extremities, C.V. Mosby, St. Louis.Google Scholar
  99. Tallroth, K., Slätis, P., Ylien, P. 1993. Loosening of threaded acetabular components, J. Arthroplasty 8, 581–584.CrossRefGoogle Scholar
  100. Thomas, B.J., Amstutz, H.C., Campbell, P. 1991. Cementless acetabular reconstruction, in: Hip Arthroplasty (H.C. Amstutz, ed.), pp. 271–283, Churchill Livingstone, New York.Google Scholar
  101. Thomas, K.A., Cook, S.D., Haddad, R.J., Kaj, J.F., Jarcho, M. 1989. Biologic response to hydroxyapatite coated titanium hips: a preliminary study in dogs, J. Arthroplasty 4, 43–53.Google Scholar
  102. Thompson, F.R. 1954. Two and a half years experience with a vitallium intramedullary hip prosthesis, J. Bone Jt. Surg. 36A, 489–502.Google Scholar
  103. Trousdale, R.T., Cabanela, M.E. 1996. Uncemented acetabular components, in: Reconstructive Surgery of the Joints (B.F. Morrey, ed.), pp. 961–978, Churchill Livingstone, New York.Google Scholar
  104. Van Syckle, P.B., Walker, P.S. 1980. Parametric analysis of design criteria for acetabular components of surface replacement hip design, Trans. Orthop. Res. Soc. 5, 292–298.Google Scholar
  105. Vasu, R., Carter, D. R., Harris, W.H. 1982. Stress distribution in the acetabular region-I before and after total hip joint replacement, J. Biomed. 15, 155–164.Google Scholar
  106. Wagner, H. 1978. Surface replacement arthroplasty of the hip, Clin. Orthop. 134, 102–130.Google Scholar
  107. Weightman, B., Freeman, M.A.R., Revell, P.A., Braden, M., Albrektsson, B.E.J., Carlson, L.V. 1987. The mechanical properties of cement and loosening of the femoral component of hip replacements, J. Bone Jt. Surg. 69B, 558–564.Google Scholar
  108. Zweymüller, K., Semlitsch, M. 1982. Concept and material properties of a cementless hip prosthesis system with Al2O3 inceramic balls heads and wrought Ti-6Al-4V Stems, Arch. Orthop. Trauma Surg. 100, 229–236.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Giuseppe Guida
    • 1
  • Dante Ronca
    • 1
  1. 1.Istituto di Clinica OrtopedicaUniversityá di NapoliNapoliItaly

Personalised recommendations