The Material and Mechanical Properties of the Healthy and Degenerated Intervertebral Disc

  • Ron Alkalay


Intervertebral Disc Nucleus Pulposus Disc Degeneration Annulus Fibrosus Lumbar Intervertebral Disc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acaroglu, E.R., Setton, L.A., Iatridis, J.C., Weidenbaum, M., Foster, R.J., Mow, V.C. 1995. Degeneration and aging affect the tensile behavior of human lumbar annulus fibrosus, Spine 20(24), 2690–2701.Google Scholar
  2. Adams, M.A., Hutton, W.C. 1983. The effect of posture on the fluid content of lumbar intervertebral discs, Spine 8, 665–671.Google Scholar
  3. Adams, M.A., McNally, D.S., Wagstaff, J., Goodship, A.E. 1993. Abnormal stress concentrations in lumbar intervertebral discs following damage to the vertebral body: a cause for disc failure, Eur. Spine J. 1, 214–221.CrossRefGoogle Scholar
  4. Adams, M.A., McMillan, D.W., Green, J.P., Dolan, P. 1996. Sustained loading generates stress concentrations in lumbar intervertebral discs, Spine 21(4), 434–438.CrossRefGoogle Scholar
  5. Alkalay, R.N., Patenick, A., Urry, D., Glazer, P.A. 2001. The use of a novel bio-elastic polymer for the restoration of the function of partially denucleated intervertebral disc: experimental study, in press.Google Scholar
  6. Bao, Q.B., Higham, P.A. 1993. Hydrogel intervertebral disc nucleus, US Patent 5,192,326.Google Scholar
  7. Baumgartner, W. 1992. Intervertebral prosthesis, US Patent 5,171,280.Google Scholar
  8. Bayliss, M.T., Jhonstone, B., O’Brien, J.P. 1988. Proteoglycan synthesis in the human intervertebral disc: variation with age, region and pathology, Spine 13, 972–981.Google Scholar
  9. Best, B.A., Setton L.A., Guilak, F., Ratcliffe, A., Weidenbaum, M., Mow, V.C. 1989. Permeability and compressive stiffness of annulus fibrosus: variation with site and composition, 35th Annual Meeting Orthopaedic Research Society, p. 354.Google Scholar
  10. Best, B.A., Guilak, F., Setton, L.A., Zhu, W., Saed-Nejed, F., Ratclifte, A. 1994. Compressive mechanical properties of the human annulus fibrosus and their relationship to biochemical composition, Spine 19(2), 212–221.Google Scholar
  11. Bodine, A.J., Ashany, D., Hayes, W.C., White, A.A. 1982. Viscoelastic shear modulus of the human intervertebral disc, 28th Annual Meeting Orthopaedic Research Society, p. 330.Google Scholar
  12. Botsford, D.J., Esses, S.I., Ogilvie-Harris, D.J. 1994. In vivo diurnal variation in intervertebral disc volume and morphology, Spine 19, 935–940.Google Scholar
  13. Brenick, S., Caillet, R. 1982. Vertebral end plate changes with aging of the human vertebrae, Spine 7(2), 97–102.Google Scholar
  14. Brenick, S., Caillet, R., Levy, B.M. 1980. The maturation and aging of the vertebrae of marmosets, Spine 5, 519–524.Google Scholar
  15. Brinckmann, P., Frobin, W., Hierholzer, E., Horst, M. 1983. Deformation of the end-plate under axial loading of the spine, Spine 8, 851–856.Google Scholar
  16. Broberg, K.B. 1983. On the mechanical behavior of intervertebral discs, Spine 8(2), 151–161.Google Scholar
  17. Broberg, K.B. 1993. Slow deformation of intervertebral discs, J. Biomech. 26(4,5), 501–512.Google Scholar
  18. Brown, T., Hansen, R.J., Yorra, A.J. 1957. Some mechanical test on the lumbosacral spine with particular reference to the intervertebral discs, J. Bone Jt. Surg., 39A(7), 1135–1164.Google Scholar
  19. Buckwalter, J.A. (ed.). 1982. Fine structural studies of human intervertebral discs, in: Idiopathic Low Back Pain (A.A. White, S.L. Gordon, eds.), pp. 108–143, C.V. Mosby, St Louis.Google Scholar
  20. Buckwalter, J.A., Smith, K.C., Kazarien, L.E., Rosenberg, L.C. 1989. Articulator cartilage and intervertebral proteoglycans differ in structure, J. Orthop. Res. 7, 146–151.CrossRefGoogle Scholar
  21. Buckwalter, J.A., Woo, S.L.Y., Goldberg, V.M. 1993. Soft tissue aging and musculoskeletal function, J. Bone Jt. Surg. 75, 1533–1548.Google Scholar
  22. Burns, M.L., Kalpes, I., Kazarian, L.E. 1984. Analysis of compressive creep beahviour of the intervertebral unit subjected to uniform axial loading using exact parametric solution equations of Kelvin-solid models: Part I. Human intervertebral joints, J. Biomech. 17, 113–130.CrossRefGoogle Scholar
  23. Butler, W.F. (ed.) 1989. Comparative anatomy and development of mammalian disc, in: The Biology of the Intervertebral Disc (P. Ghosh, ed.), pp. 84–108, CRC Pres, Boca Raton.Google Scholar
  24. Büttner-Janz, K., Schellnack, K., Zipple, H. 1989. Biomechanics of the SB Charitè lumbar intervertebral disc endoprosthesis, Int. Orthop. (SICOT) 13, 173–176.Google Scholar
  25. Dickson, I.R., Happey, F., Pearson, C.H. 1967. Variations in protein components of the human intervertebral disc with age, Nature 215, 50–53.Google Scholar
  26. Ebara, S., latridis, J.C., Setton, L.A., Foster, R.J., Mow, V.C., Weidenbaum, M. 1996. Tensile properties of nondegenerated human lumbar annulus fibrosus, Spine 21(4), 452–461.CrossRefGoogle Scholar
  27. Edeland, H.G. 1989. Some additional suggestions for an intervertebral disc prosthesis, J Biomed. Mater. Res., Appl. Biomater. 23, 189–194.Google Scholar
  28. Eyre, D.R., Benya, P., Buckwalter, J.A., Gatersion B., Heinegard, D., Oegema, T., et al, (eds.). 1989. Basic science perspectives. Part B. Intervertebral disc, in: New Perspective on Low Back Pain (J.W. Frymoyer, S.L. Gordon, eds.), pp. 147–207, American Academy of Orthopaedic Surgeons, Park Ridge, IL.Google Scholar
  29. Farfan, H.F., Cossette, J.W., Robertson, G.H., Wells, R.V., Kraus, H. 1970. The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration, J. Bone Jt. Surg. 52 (Am. Ed), 468–497.Google Scholar
  30. Farfan, H.F., Huberdeau, R. M., Dubow, H.I. 1972. Lumbar intervertebral disc degeneration: The influence of geometric features on the pattern of disc degeneration-A postmortem study, J. Bone Jt. Surg., 54–A(3), 492–510.Google Scholar
  31. Fassio, B., Ginestie, J.F. 1978. Disc prosthesis made of silicone. Experimental study and first clinical cases, Nouv. Presse Med. 21, 207.Google Scholar
  32. Fujita, Y., Lotz, C., Soejima, O. 1995. Site specific radial tensile properties of the lumbar annulus fibrosus, 37th Annual Meeting Orthopaedic Research Society, p. 673.Google Scholar
  33. Galante, J.O. 1967. Tensile properties of the human lumbar annulus fibrosus, Acta Orthop. Scand., 100 (suppl.).Google Scholar
  34. Granata, K.P., Marras, W.S. 1993. An EMG-assisted model of loads on the lumbar spine during asymmetric trunk extensions, J. Biomech. 26(12), 1429–1438.CrossRefGoogle Scholar
  35. Griffith, S.L., et al. 1994. A multicenter retrospective study of the clinical results of the LINK SB Charite intervertebral prosthesis, Spine 19, 1842–1949.Google Scholar
  36. Gunzburg, R., Parkinson, R., Moore, R. 1992. A cadaveric study comparing discography, MRI, histology, and mechanical behavior of the human lumbar disc, Spine 17, 417–423.Google Scholar
  37. Hall, A.C., Urban, J.P.G., Gehl, K.A. 1991. The effects of hydrostatic pressure on matrix synthesis in articular cartilage, J. Orthop. Res. 9, 1–10.CrossRefGoogle Scholar
  38. Hedman, T.P., el al. 1988. Artificial spinal disc, US Patent 4,759,769.Google Scholar
  39. Hedman, T.P., et al. 1991. Design of an intervertebral disc prosthesis, Spine 16, S256–S260.Google Scholar
  40. Holmes, H.M., Lai, W.M., Mow, V.C. 1990. The nonlinear characteristics of soft gels and hydrated connective tissue in ultrafiltration, J. Biomech. 23, 1145–1156.CrossRefGoogle Scholar
  41. Holmes, A.D., Hukins, D.W.L., Freemont, A.J. 1993. End-plate displacement during compression of lumbar vertebra-disc-vertebra segments and mechanisms of failure, Spine 18(1), 128–135.Google Scholar
  42. Iatridis, J.C., et al. 1997. The viscoelastic behavior of the non-degenerated human lumbar nucleus pulposus in shear, J. Biomech., 30(10), 1005–1013.CrossRefGoogle Scholar
  43. Iatridis, J.C., et al. 1998. Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression, J. Biomech. 31(6), 535–544.CrossRefGoogle Scholar
  44. Jhonstone, B., Bayliss, M.T. 1995. The large proteoglycans of the human intervertebral disc: changes in their biosynthesis and structure with age, topography, and pathology, Spine 20(6), 674–684.Google Scholar
  45. Kalpes, I., Kazarian, L.E., Burns, M.L. 1984. Analysis of compressive creep beahviour of the intervertebral unit subjected to uniform axial loading using exact parametric solution equations of kelvin-solid models-Part I. Rhesus monkey intervertebral joints, J. Biomech. 17, 131–136.Google Scholar
  46. Kasra, M., Shirazi-Adl, A., Drouin, G. 1982. Dynamics of human lumbar intervertebral joints: Experimental and finite element investigations, Spine 17(1), 93–101.Google Scholar
  47. Kazarian, L.E. 1975. Creep characteristics of the human spinal column, Orthop. Clinics North America 6(1), 3–18.Google Scholar
  48. Keller, T.S., Spengler, D.M., Hansson, T.H. 1987. Mechanical behavior of human lumbar spine I. Creep analysis during static compressive loading, J. Orthop. Res. 5, 467–478.CrossRefGoogle Scholar
  49. Kelsly, J.L. 1980. Epidemiology and impact of low back pain, Spine 5, 133–142.Google Scholar
  50. Kirsmer, M., Hiad, C., Rabi, W. 1996. The contribution of annulus fibers to torque resistance, Spine 21(22), 2551–2557.Google Scholar
  51. Kostuik, J.P. 1997. Intervertebral disc replacement: experimental study, Clin, Orthop. Relat. Res. 337, 27–41.Google Scholar
  52. Kraemer, J.D., Kolditz, M., Gowin, R. 1985. Water and electrolyte content of the human intervertebral disc under variable load, Spine 10, 69–71.Google Scholar
  53. Krag, M.H., et al. 1993. Effect of denucleation and degeneration grade on intervertebral disc stress relaxation, 39th Annual Meeting, Orthopaedic Research Society.Google Scholar
  54. Lai, W.M., How, J., Mow, V.C. 1991. A triphasic theory for the swelling and deformation behavior of cartilage tissue, J. Biomech. Eng. 113, 145–158.Google Scholar
  55. Lee, C.K., Langrana, N.A. 1984. Lumbosacral spinal fusion. A biomechanical study, Spine 9, 574–581.Google Scholar
  56. Lee, C.K., Langrana, N.A., Alexander, H., Clemow, A.J., Chen, E.H., Parsons, J.R. 1990. Functional and biocompatible intervertebral disc spacer, US Patent 4,911,718.Google Scholar
  57. Lemaire, J.P., Skalli, W., Lavaste, P., Templier, A., Mendes, F., Diop, A., et al. 1997. Intervertebral disc prosthesis. Results and prospects for the year 2000, Clin. Orthop. Relat. Res. 337, 64–76.Google Scholar
  58. Leong, J.C., Chun, S.Y., Grange, W.J., Fang, D. 1983. Long term results of lumbar intervertebral disc prolapse, Spine 8(7), 793–799.Google Scholar
  59. Marchand, F., Ahmed, A.M., 1989. Mechanical properties and failure mechanisms of the lumbar disc annulus, in: 35th Annual Meeting, Orthopaedic Research Society.Google Scholar
  60. Marchand, F., Ahmad, A. M. 1990. Investigation of the laminate structure of lumbar disc annulus fibrosus, Spine 15(5), 402–408.Google Scholar
  61. Markolf, K.L. 1972. Deformation of the thoracolumbar intervertebral joint in response to external loads: a biomedical study using autopsy material, J. Bone Jt. Surg. 54A: 511–533.Google Scholar
  62. Markolf, K.L., Morris, J.M. 1974. The structural components of the intervertebral disc: A study of their contribution to the ability of the disc to withstand compressive forces, J. Bone Jt. Surg. 56A(4), 675–684.Google Scholar
  63. Maroudas, A., et al. 1975. Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro, J. Anat. 120, 113–130.Google Scholar
  64. McGill, S.M., Norman, R.W. 1985. Dynamically and statically determined low back moments during lifting, J. Biomech. 18(12), 877–885.CrossRefGoogle Scholar
  65. McGill, S.M., Norman, R.W. 1986. Partitioning of the L4-L5 dynamic moment into disc, ligamentous, and muscular components during lifting, Spine 11(7), 666–677.Google Scholar
  66. McNally, D.S., Adams, M.A. 1992. Internal intervertebral disc mechanics as revealed by stress profilometry, Spine 17(1), 66–73.Google Scholar
  67. McNally, D.S., Adams, M.A., Goodship, A.E. 1992. Measurement of stess distribution within intact loaded intervertebral disc, in: Experiemental Mechanics (E.G Little, ed.), pp. 139–150, Elevier Science Publishers B.V. Amsterdam.Google Scholar
  68. Mow, V.C., et al., (eds.). 1990. Biphasic and quasilinear viscoelastic theories for hydrated soft tissue, in: Biomechanics of Diarthrodial Joints (V.C. Mow, A. Ratcliffe, S.L.Y. Woo, eds.), pp. 215–260, Springer-Verlag, New York.Google Scholar
  69. Nachemson, A.L. 1960. Lumbar interdiscal pressure, Acta Orthop. Scand. 43 (Suppl), 1–104.Google Scholar
  70. Ogata, K., Whiteside, L.A. 1981. Nutritional pathways of the intervertebral disc: An experimental study using hydrogen washout technique, Spine 6(3), 211–216.Google Scholar
  71. Ordway, N.R., Han, Z.H., Bao, Q.B. 1994. Biomechanical evaluation for the intervertebral hydrogel nucleus, 9th Annual Meeting of the North American Spine Society, Minneapolis, MN.Google Scholar
  72. Osti, O.L., Vernon-Roberts, B., Fraser, R.D. 1990. Annulus tears and intervertebral degeneration: an experimental study using animal models, Spine 15, 762–767.Google Scholar
  73. Panagiotacopulos, N.D., Pope, M.H., Krag, M.H., Bloch, R.A. 1987. Mechanical model for the human intervertebral disc, J. Biomech. 20(9), 839–850.CrossRefGoogle Scholar
  74. Panjabi, M.M., White, A.A. (eds.). 1990. Clinical Biomechanics of the Spine, J.B. Lippincott Company, Philadelphia.Google Scholar
  75. Parsons, J.R., et al. 1992. Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness, US Patent 5,171,281.Google Scholar
  76. Patil, A. 1982. Artificial intervertebral disc, US Patent 4,309,777.Google Scholar
  77. Pfeiffer, M., Griss, P., Franke, P. 1994. Degeneration model of the porine lumbar motion segment: effect of various interdiscal procedures, Eur. Spine J. 5, 8–16.Google Scholar
  78. Ray, C.D., Corbin, T.P. 1990. Prosthetic disc containing therapeutic material, US Patent 4,904,280.Google Scholar
  79. Repanti, M., Korovessis, P.G., Stamatakis, M.V., Spastris, P., Kosti, P. 1998. Evaluation of disc degeneration in lumbar spine: A comparative histological study between herniated postmortem retrieved disc specimens, J Spinal Disorders 11(1), 41–45.Google Scholar
  80. Roberts, S., Menage, J., Urban, J.P.G. 1989. Biomechanical and structural properties of cartilage end-plate and it relation to the intervertebral disc, Spine 14, 166–174.Google Scholar
  81. Roy-Camille, R., Saillant, G., Lavaste., F. 1978. Experimental study of lumbar disc replacement, Rev. Chir. Orthop. Repar. Appar. Mot. 64 (Suppl II), 106–107.Google Scholar
  82. Salib, R.M., Pettine, K. A. 1989. Intervertebral disk arthroplasty, US Patent 5,258,031.Google Scholar
  83. Scheider, P.G., Oyen, R. 1974. Plastic surgery on intervertebral disc. Part I: intervertebral disc replacement in the lumbar region with silicone rubber. Theoretical and experimental studies, Z. Orthop. 112, 1078–1086.Google Scholar
  84. Setton, L.A., Zhu, W.B., Mow, V.C. 1991. Compressive viscoelastic properties of cartilaginous endplates of lumbar intervertebral discs, 37th Annual Meeting, Orthopaedic Research Society.Google Scholar
  85. Setton, L.A., et al. 1993. Compressive properties of cartilaginous end plate of the Babon lumbar spine, J. Orthop. Res. 11, 228–239.CrossRefGoogle Scholar
  86. Shah, J.S., Hampson, W.G.J., Jayson, M.I.V. 1978. The distribution of surface strain in cadaveric lumbar spine, J. Bone Jt. Surg. 60(Br), 246–251.Google Scholar
  87. Shirazi-Adl, A. 1989. On the fibre composite material models of disc annulus-comparison of predicted stresses, J. Biomech. 22(4), 357–365.CrossRefGoogle Scholar
  88. Shirazi-Adl, A. 1991. Mechanical role of disc annulus fibers and matrix in poroelastic creep response of a human lumbar disc, 37th Annual Meeting, Orthopaedic Research Society, p. 241.Google Scholar
  89. Skaggs, D.L., Gibbons, J.C., Richardson, L.C., Foster, R.J., Weidenbaum, M. 1993. Regional variations in the tensile properties and biochemical compositions of single lamellae of human annulus fibrosus, 39th Annual Meeting, Orthopaedic Research Society, p. 420.Google Scholar
  90. Skaggs, D.L., et al. 1994. Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus, Spine 19(12), 1310–1319.Google Scholar
  91. Steffee, A.D. 1991. Artificial disc, US Patent 5,071,437.Google Scholar
  92. Stokes, I., Greenapple, D.H. 1985. Measurement of surface deformation of soft tissue, J. Biomech. 18, 1–7.CrossRefGoogle Scholar
  93. Stubstad, J.A., Urbaniak, J.R., Khan, P. 1975. Prosthesis for spinal repair, US Patent 3,867,728,25.Google Scholar
  94. Tanaka, M., Nakahara, S., Inoue, H. 1993. A pathologic study of discs in the elderly, Spine 18, 1456–1462.Google Scholar
  95. Trafimow, J.H., et al. 1993. The effects of quadriceps fatigue on technique of lifting, Spine 18(3), 364–367.CrossRefGoogle Scholar
  96. Trout, J.J., Buckwalter, J.A., Moore, K.C. 1982a. Ultrastructure of human intervertebral disc I. Cells of the nucleus pulposus, Anat. Rec. 204, 307–314.CrossRefGoogle Scholar
  97. Trout, J.J., et al. 1982b. Ultrastructure of human intervertebral disc II. Changes in notocordal cells with age, Tissue Cell 14, 359–369.CrossRefGoogle Scholar
  98. Tsuji, H., Hirano, N., Ohsima, H., Ishihara, H., Terahata, N., Motoe, T., 1993. Structural variation of the anterior annulus fibrosus in the development of human lumbar intervertebral disc, Spine, 18(2), 204–210.Google Scholar
  99. Urban, J.P.G. (ed.). 1993. The effect of physical factors on disc cell metabolism, in: Musculoskeletal Soft Tissue Aging: Impact on Mobility (J.A. Buckwalter, V.M. Goldberg, S.L.Y. Woo, eds.), American Academy of Orthopeadic Surgeons, Rosemont, IL.Google Scholar
  100. Urba, J.P.G., Maroudas, A., Swelling of the intervertebral disc in vitro, Connect. Tissue Res. 9, 1–10.Google Scholar
  101. Urban, J.P.G., McMullin, J.F. 1988. Swelling pressure of the lumbar intervertebral discs: Influence of proteoglycan and collagen contents, Biorheology 13, 179–187.Google Scholar
  102. Vernon-Roberts, B. (ed.). 1987. The pathology and interrelation of intervertebral disc lesions, osteoarthrosis of apophyseal joints, lumbar spondylosis and low back pain, in: The Lumbar Spine and Back Pain (M.D.V. Jayson, ed.), pp. 83–114, Churchill Livingstone, New York.Google Scholar
  103. Virgin, W. 1951. Experimental investigations into the physical properties of intervertebral discs, J. Bone Jt. Surg. 33B(4), 607–611.Google Scholar
  104. White, A.A., Edwards, W.T, Liberman, D., Hayes, W.C., Lewinnek, E.G., (eds.). 1981. Biomechanics of lumbar spine and sacroiliac articulation: relevance to idiopathic low back pain, in: Symposium on Idiopathic Low Back Pain (A.A. White, S.L. Gordon, pp. 296–322, C.V. Mosby, St. Louis.Google Scholar
  105. Zippel, H. (ed.). 1991. “Charitè modular”: concept, experience and results, in: The Artificial Disc (M. Brock, H.M. Mayer, K. Weigel, eds.), pp. 69–77, Springer, Berlin.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ron Alkalay
    • 1
  1. 1.Orthopaedic Biomechanics LaboratoryBeth Israel Deaconess Medical CentreBostonUSA

Personalised recommendations