Articular Cartilage

  • Paolo A. Netti
  • Luigi Ambrosio


Hydraulic Conductivity Articular Cartilage Interstitial Fluid Fluid Transport Deep Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, G.C., Mow, V.C. 1982a. Biomechanics of normal and osteoarthrotic articular cartilage, in: Clinical Trends in Orthopaedics (P.D. Wilson, L.R. Straub, eds.), pp. 189–197, Thieme-stratton, New York.Google Scholar
  2. Armstrong, G.C., Mow, V.C. 1982b. Variation of the intrinsic mechanical properties of human cartilage with age, degeneration, and water content, J. Bone Jt. Surg. 64-A, 88–94.Google Scholar
  3. Barocas, V.H., Tranquillo, R.T. 1997. An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance, J. Biomech. Eng. 119, 137–145.Google Scholar
  4. Barocas, V.H., Knapp, D.M., Tranquillo, R.T. 1995. Biphasic mechanical theory of fibrillar gels, Beaver Creek (Colorado): ASME, BED-29, pp. 309–310.Google Scholar
  5. Basser, P.J. 1992. Interstitial pressure, volume and flow during infusion into brain tissue, Microvasc. Res. 44, 143–165.CrossRefGoogle Scholar
  6. Bassett, C.A.L., Pawluk, R.J. 1972. Electrical behavior of cartilage during loading, Science 178, 982–983.Google Scholar
  7. Bayliss, M.T., Urban, J.P.G., Jhonstone, B., Holm, S. 1986. In vitro method for measuring synthesis rates in the intervertebral disc, J. Orthop. Res. 4, 10–17.CrossRefGoogle Scholar
  8. Beherens, F., Kraft, E.L., Oegema, T.R. 1989. Biochemical changes in articular cartilage after joint immobilization by casting or external fixation, J. Orthop. Res. 7, 335–343.Google Scholar
  9. Biot, M.A. 1941. General theory of three-dimensional consolidation, J. Appl. Phys. 12, 155–164.zbMATHGoogle Scholar
  10. Biot, M.A. 1955. Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys. 26, 182–185.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Bowen, R.M. 1976. Theory of mixtures, in: Continuum Physics III (A.C. Eringen, ed.), pp. 1–127, Academic Press, New York.Google Scholar
  12. Bowen, R.M. 1980. Incompressible porous media models by use of the theory of mixtures, Int. J. Eng. Sci. 18, 1129–1148.zbMATHCrossRefGoogle Scholar
  13. Christensen, R.M. 1971. Theory of Viscoelasticity: An Introduction, Academic Press, New York.Google Scholar
  14. Clark, J.M. 1985. The organization of collagen in cryofractured rabbit articular cartilage: a scanning electron microscopic study, J. Orthop. Res. 3, 17–29.CrossRefGoogle Scholar
  15. Eyre, D.R., Apone, S., Wu, J.J., Ericson, L.H., Walsh, K.A. 1987. Collagen type IX: evidences for covalent linkages to type II collagen in cartilage, FEBS Lett. 220, 337–341.CrossRefGoogle Scholar
  16. Frank, E.H., and Grodzinsky, A.J. 1987a. Cartilage electromechanics-I. Electrokinetic transduction and the effect of electrolyte pH and ionic strength, J. Biomech. 20, 615–627.Google Scholar
  17. Frank, E.H., and Grodzinsky, A.J. 1987b. Cartilage electromechanics-II. A continuum model of cartilage electrokinetic transduction and correlation with experiments. J. Biomech. 20, 629–639.Google Scholar
  18. Fukada, E. 1974. Piezoelectric properties of biological macromolecules, Adv. Biophys. 6, 121.Google Scholar
  19. Fung, Y.C. 1990. Biomechanics: Motion, Flow, Stress and Growth, Springer, New York.zbMATHGoogle Scholar
  20. Fung, Y.C. 1993. Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York.Google Scholar
  21. Gray, M.L., Pizzanelli, A.M., Grodzinsky, A.J., Lee, R.C. 1988. Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J. Orthop. Res. 6, 777–792.CrossRefGoogle Scholar
  22. Gray, M.L., Pizzanelli, A.M., Lee, R.C., Grodzinsky, A.J., Swan, D.A. 1989. Kinetics of the chondrocyte biosynthetic response to compressive load and release. Biochim. Biophys. Acta 991, 415–425.Google Scholar
  23. Grimshaw, P.E., Grodzinsky, A.J., Yarmush, M.L., Yarmush, D.M. 1989. Dynamic membranes for protein transport: Chemical and electrical control, Chem. Eng. Sci. 44, 827–840.Google Scholar
  24. Grodzinsky, A.J. 1983. Electromechanical and physiochemical properties of connective tissue, CRC Crit. Rev. Biomed. Eng. 9, 133–199.Google Scholar
  25. Grodzinsky, A.J., Liphitz, H., Glimcher, M.J. 1978. Electromechanical properties of articular cartilage during compression and stress relaxation, Nature 275, 448–450.CrossRefGoogle Scholar
  26. Grodzinsky, A.J., Roth, V., Myers, E.R., Grossman, W.D., Mow, V.C. 1981. The significance of electric and osmotic forces in the non-equilibrium swelling behavior of articular cartilage in tension, J. Biomech. Eng. 103, 221–231.Google Scholar
  27. Hall, A.C., Urban, J.P., Gehl, K. A. 1991. The effects of hydrostatic pressure on matrix synthesis in articular cartilage, J. Orthop. Res. 9, 1–10.CrossRefGoogle Scholar
  28. Hodge, W.A., Fijan, R.S., Carlson, K.L., Burgess, R.G., Harris, W.H., Mann, R.W. 1986. Contact pressure in the human hip joint measured in vivo, Proc. Natl. Acad. Sci. USA 83, 2879–2883.Google Scholar
  29. Holmes, M.H. 1986. Finite deformation of soft tissue: analysis of a mixture model in uniaxial compression, J. Biomech. Eng. 108, 372–381.Google Scholar
  30. Holmes, M.H., Lai, W.M., Mow, V.C. 1985. Singular perturbation analysis of the nonlinear, flow-dependent, compressive stress-relaxation behavior of articular cartilage. J. Biomech. Eng. 107, 206–218.CrossRefGoogle Scholar
  31. Jain, R., Jayaraman, G. 1987. A theoretical model for water flux through the arterial wall, J. Biomech. Eng. 109, 311–317.Google Scholar
  32. Jenkins, R.B., Little, R.W. 1974. A constitutive equation for parallel-fibered elastic tissue, J. Biomech. 7, 397.CrossRefGoogle Scholar
  33. Jones, I.L., Klamfeld, D.D.S., Sandstrom, T. 1982. The effect of continuous mechanical pressure upon the turnover of articular cartilage proteoglycans in vitro, Clin. Orthop. Relat. Res. 165, 283–289.Google Scholar
  34. Katz, E.P., Watchel, E.J., Maroudas, A. 1986. Extrafibrillar proteoglycans osmotically regulate the molecular packing of collagen in cartilage, Biochim. Biophys. Acta 882, 136–139.Google Scholar
  35. Kenyon, D.E. 1979. A mathematical model of water flux through aortic tissue, Bull. Math. Biol. 41, 79–90.MathSciNetCrossRefGoogle Scholar
  36. Kim, Y.J., Sah, R.L., Doong, J.Y., Grodzinsky, A.J. 1988. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174, 168–176.CrossRefGoogle Scholar
  37. Kuettner, K.E., Schleyerbach, R., Haschall, V.C. 1986. Articular Cartilage Biochemistry, Raven Press, New York.Google Scholar
  38. Lai, M.W., Mow, V.C. 1980. Drag-induced compression of articular cartilage during a permeation experiment, Biorheology 17, 111–123.Google Scholar
  39. Levick, J.R. 1987a. Flow through interstitium and other fibrous matrices. Q. J. Exp. Physiol. 72, 409–437.Google Scholar
  40. Levick, J.R. 1987b. Relation between hydraulic resistance, composition of the interstitium, in: Interstitial-Lymphatic Liquid and Solute Movement (N.C. Staub, J.C. Hogg, A.R. Hargens, eds.), pp. 124–133, Karger, Basel.Google Scholar
  41. Lotke, P.A., Black, J., Richardson, S.J. 1974. Electromechanical properties in human articular cartilage. J. Bone J. Surg. 56A, 1040–1046.Google Scholar
  42. Mak, A.F. 1986. The apparent viscoelastic behavior of articular cartilage-the contributions from the intrinsic matrix viscoelasticity, interstitial flows, J. Biomech. Eng. 108, 123–130.CrossRefGoogle Scholar
  43. Mansour, J.M., Mow, V.C. 1976. The permeability of articular cartilage under compressive strain, at high pressures, J. Bone J. Surg. 58A, 509–516.Google Scholar
  44. Maroudas, A., Mizrahi, J., Ben Haim, E., Ziv, I. 1987. Swelling pressure in cartilage, in: Interstitial-Lymphatic Liquid and Solute Movement (N.C. Staub, J.C. Hogg, A.R. Hargens, eds.), pp. 203–212, Karger, Basel.Google Scholar
  45. Mow, V.C., Lai, W.M. 1979. Mechanics of animal joints, Annu. Rev. Fluid Mech. 11, 247–288.CrossRefGoogle Scholar
  46. Mow, V.C., Lai, W.M. 1980. Recent developments in synovial joint biomechanics, SIAM Rev. 22, 275–317.MathSciNetCrossRefzbMATHGoogle Scholar
  47. Mow, V.C., Soslowsky, L.J. 1991. Friction, lubrication and wear of diarthrodial joints, in: Basic Orthopaedic Biomechanics (V.C. Mow, W.C. Haynes, eds.), pp. 254–291, Raven Press, New York.Google Scholar
  48. Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G. 1980a. Biphasic creep, stress relaxation of articular cartilage in compression, theory, experiments, J. Biomech. Eng. 102, 73–84.Google Scholar
  49. Mow, V.C., Holmes, M.H., Lai, W.M. 1984. Fluid transport, mechanical properties of articular cartilage: a review, J. Biomech. 17, 377–394.Google Scholar
  50. Mow, V.C., Kwan, M.K., Lai, W.M., Holmes, M.H. 1986. A finite deformation theory for nonlinearly permeable soft hydrated biological tissues, in: Frontiers in Biomechanics (S. Schmid-Schonbein, L.-Y. Woo, B.W. Zweifach, eds.), Springer-Verlag, New York.Google Scholar
  51. Mow, V.C., Lai, W.M., Hou, J.S. 1990a. A triphasic theory for the swelling properties of hydrated charged soft biological tissues, Appl. Mech. Rev. 43, 134–141.Google Scholar
  52. Mow, V.C., Ratcliffe, A., Woo, S.L.-Y. 1990b. Biomechanics of Diarthrodial Joints, I & II, Springer-Verlag, New York.Google Scholar
  53. Mow, V.C., Ratcliffe, A., Poole, R.A. 1992. Cartilage, diarthrodial joints as paradigms for hierarchial materials, structures, Biomaterials 13, 67–97.CrossRefGoogle Scholar
  54. Mow, V.C., Ateshian, G.A., Spilker, R.L. 1993. Biomechanics of diarthrodial joints: a review of twenty years of progress, J. Biomech. Eng. 115, 460–467.Google Scholar
  55. Muir, H. 1981. Proteoglycans as organizer of the intercellular matrix, Biochem. Soc. Trans. 9, 1983.Google Scholar
  56. Nagashima, T., Tamaki, N., Matsumoto, S., Horwitz, B., Seguchi, Y. 1987. Biomechanics of hydrocephalus: a new mathematical model, Neurosurgery 21, 898–904.Google Scholar
  57. Nagashima, T., Horwitz, B., I., R.S. 1990. A mathematical model for vasogenic brain edema, Adv. Neurol. 52, 317–326.Google Scholar
  58. Netti, P.A., Baxter, L.T., Boucher, Y., Skalak, R., Jain, R.K. 1995. Time-dependent behavior of interstitial fluid pressure in solid tumors: implication for drug delivery, Cancer Res. 55, 5451–5458.Google Scholar
  59. Netti, P.A., Ambrosio, L., Ronca, D., Nicolais, L. 1996. Structure-mechanical A., properties relationship of natural tendons and ligaments, J. Mater. Sci., Materials in Medicine 7, 525.CrossRefGoogle Scholar
  60. Netti, P.A., Baxter, L.T., Boucher, Y., Skalak, R., Jain, R.K. 1997. Macro and microscopic fluid transport in living tissues: application to solid tumors, AIChE J. 43, 818–834.CrossRefGoogle Scholar
  61. Nimni, M.E. 1988. Collagen Biochemistry, I, II & III, CRC Press, Boca Raton.Google Scholar
  62. Palmosky, M.J., Brandt, K.D. 1984. Effects of salicylate, indomethacin on glycosaminoglycan, prostaglandin E2 synthesis in intact canine knee cartilage ex vivo, Arthritis Rheum. 27, 398–403.Google Scholar
  63. Parkkinen, J.J., Lammi, M.J., Helminen, H.J., Tammi, M. 1992. Local stimulation of proteog-lycan synthesis in articular cartilage explants by dynamic compression in vitro, J. Ortho. Res. 10, 610–620.Google Scholar
  64. Parkkinen, J.J., Ikonen, J., Lammi, M.J., Laakkonen, J., Tammi, M., Helminen, H.J. 1993. Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants, Arch. Biochem. Biophy. 300, 458–465.Google Scholar
  65. Poole, A.R., Pidoux, I., Rosemberg, L.C. 1982. An immuno electron microscope study of the organization of proteoglycans monomer, link protein, and collagen in the matrix of articular cartilage, J. Cell Biol. 93, 921–937.Google Scholar
  66. Poole, C.A., Flint, M.H., Beaumont, B.W. 1984. Morphological and functional interrelationships of articular cartilage matrix, J. Anat. 138, 113–138.Google Scholar
  67. Ratcliffe, A., Mow, V.C. 1996. Articular cartilage, in: Extracellular Matrix (W.D. Comper, ed.), pp. 234–302, OPA, Harwood Academic Publisher, Amsterdam.Google Scholar
  68. Redler, I., Zimny, M.L., Mansell, J., Mow, V.C. 1975. Significance of the tidemark of articular cartilage, Clin. Orthop. Relat. Res. 112, 357–362.Google Scholar
  69. Roth, V., Mow, V.C. 1980. The intrinsic tensile behaviour of the matrix of bovine articular cartilage, its variation with age, J. Bone Jt. Surg. 62A, 1102–1117.Google Scholar
  70. Sah, R.L., Kim, Y.J., Doong, J.Y., Grodzinsky, A.J., Plaas, A.H., Sandy, J.D. 1989. Biosynthetic response of cartilage explants to dynamic compression, J. Orthop. Res. 7, 619–636.CrossRefGoogle Scholar
  71. Sah, R.L., Grodzinsky, A.J., Plaas, A.H., Sandy, J.D. 1990. Effects of tissue compression on the hyaluronate-binding properties of newly synthesized proteoglycans in cartilage explants, Bioch. J. 267, 803–808.Google Scholar
  72. Saltzman, W.M., Radomsky, M.L., Whaley, K.J., Cone, R.A. 1994. Antibody diffusion in human cervical mucus, Biophys. J. 66, 508–515.CrossRefGoogle Scholar
  73. Schmidt, M.B., Mow, V.C., Chun, L.E., Eyre, D.R. 1990. Effect of proteoglycan extraction on the tensile behavior of articular cartilage, J. Orthop. Res. 8, 353–363.CrossRefGoogle Scholar
  74. Schneiderman, R., Keret, D., Maroudas, A. 1986. Effects of mechanical and osmotic pressure on the rate of glycosaminoglycan synthesis in the human adult femoral head cartilage: an in vitro study, J. Orthop. Res. 4, 393–408.CrossRefGoogle Scholar
  75. Simon, B.R. 1992. Multiphase poroelastic finite element models for soft tissue structure, Appl. Mech. Rev. 45, 191–218.CrossRefGoogle Scholar
  76. Simon, B.R., Gaballa, M. 1988a. Finite strain poroelastic finite element models for large arterial cross sections, in: Computational Methods in Bioengineering (R.L. Spilker, B.R. Simon, eds.), pp. 325–331, ASME, New York.Google Scholar
  77. Simon, B.R., Gaballa, M. 1988b. Poroelastic finite element models for the spinal motion segment including ionic swelling, in: Computational Methods in Bioengineering (R.L. Spilker, B.R. Simon, eds.), pp. 93–99, ASME, New York.Google Scholar
  78. Simon, B.R., Wu, J.S.S., Evans, J.H. 1983. Poroelastic mechanical models for the intervertebral disc, in: Advances in Bioengineering (D. Bartel, (ed.), ASME Winter Annual Meeting, Boston, pp. 106–107.Google Scholar
  79. Spilker, R.L., Suh, J.K. 1990. Formulation and evaluation of a finite element model for the biphasic model of hydrated soft tissue, Comput. Struct. 35, 425–439.CrossRefzbMATHGoogle Scholar
  80. Spilker, R.L., Suh, J.K., Mow, V.C. 1992. A finite element analysis of indentation stressrelaxation response of linear biphasic articular cartilage, J. Biomech. Eng. 114, 192–201.Google Scholar
  81. Torzilli, P.A. 1985. Influence of cartilage conformation on its equilibrium water partition, J. Orthop. Res. 3, 473–483.CrossRefGoogle Scholar
  82. Truesdell, C., Toupin, R.A. 1960. The classical field theories, in: Handbuck der Physik I1I/I, Springer, Berlin.Google Scholar
  83. Valhmu, W.B., Stazzone, E.J., Bachrach, N.M., Saed-Nejad, F., Fischer, S.G., Mow, V.C., Ratcliffe, A. 1998. Load-controlled compression of articular cartilage induces a transient stimulation of aggrecan gene expression, Arch. Biochem. Biophys. 353, 29–36.CrossRefGoogle Scholar
  84. Van de Rest, M., Mayne, R. 1988. Type IX collagen proteoglycan from cartilage is covalently cross-linked to type II collagen, J. Biol. Chem. 263, 1615–1618.Google Scholar
  85. Winlove, C.P., Parker, K.H. 1995. The physiological function of the extracellular matrix, in: Interstitium, Connective Tissue and Lymphatics (R.K. Reed, G.A. Laine, J.L. Bert, C.P. Winlove, N. McHale, eds.), pp. 137–165, Portland Press, London.Google Scholar
  86. Woo, S. L.-Y., Mow, V.C., Lai, W.M. 1987. Biomechanical properties of articular cartilage, in: Handbook of Bioengineering (R. Skalak, S. Chien, eds.), McGraw-Hill, Inc., New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Paolo A. Netti
    • 1
  • Luigi Ambrosio
    • 1
  1. 1.Institute of Composite Materials Technology C.N.R. and C.R.I.B.University of Naples “Federico II”NaplesItaly

Personalised recommendations