Skip to main content

Structural Relationships between Members of the Insulin Receptor Family

  • Chapter
  • 377 Accesses

Abstract

Comparative sequence analyses have revealed that many proteins are composed of a number of different, sometimes repeated, structural units. In the case of the insulin receptor subfamily, 11 distinct regions have been identified in each monomer. The N-terminal half of the ectodomain contains two homologous domains (L1 and L2), separated by a cys-rich region containing 24–26 cysteines. The Cterminal half of the ectodomain consists of three fibronectin type III domains, the second of which contains a large insert domain. Experimental structural information has been obtained from crystals of a fragment (residues 1–462) comprising the L1-cysteine-rich-L2 region of the IGF-IR ectodomain. The molecule adopts an extended structure with a central space, bounded by all three domains, of sufficient size to accommodate ligand. Two regions of the receptor which are involved in hormone binding, map to this central site. Each L domains adopts a compact shape consisting of a single stranded right-handed β-helix. The cys-rich region is composed of eight disulfide-bonded modules, seven of which form a rod-shaped domain with modules associated in a novel manner. While they resemble the modules found in the TNF receptor and laminin repeats, this novel arrangement suggests that EGF repeats found in many proteins are composed of two smaller modules containing two or one disulfide bond. Single-molecule electron microscope imaging has revealed that the IR ectodomain resembles a compact U-shaped prism, where the Ll-cys rich-L2 domains occupy the membrane distal region and the fibronectin type III and insert domains are located in the membrane-proximal third.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe Y., Odaka M., Inagaki F., Lax I., Schlessinger J. and Kohda D. “Disulfide bond structure of human epidermal growth factor receptor.” Journal of Biological Chemistry 273 (1998): 11150–11157.

    PubMed  CAS  Google Scholar 

  • Adams T.E., Epa V.C., Garrett T.P.J. and Ward C.W. “Structure of the type I insulin-like growth factor receptor.” Cellular and Molecular Life Sciences 57 (2000): 1050–1093.

    PubMed  CAS  Google Scholar 

  • Bajaj M., Waterfield M.D., Schlessinger J., Taylor W.R. and Blundell T. “On the tertiary structure of the extracellular domains of the epidermal growth factor and insulin receptors.” Biochimica et Biophysica Acta 916 (1987): 220–226.

    PubMed  CAS  Google Scholar 

  • Banner D.W., D’Arcy A., Janes W., Gentz R., Schoenfeld H.-J., Broger C., Loetscher H. and Lessiauer W. “Crystal structure of the soluble human 55 kd TNF receptor-human TNF-β complex: implications for TNF receptor activation.” Cell 73 (1993): 431–445.

    Article  PubMed  CAS  Google Scholar 

  • Bilan P.J. and Yip C.C.Q. “Unusual insulin binding to cells expressing an insulin receptor mutated at cysteine 524.” Biochemical and Biophysical Research Communications 205 (1994): 1891–1898.

    Article  PubMed  CAS  Google Scholar 

  • Campbell I.D. and Spitzfaden C. “Building proteins with fibronectin type III modules.” Structure 2 (1994): 333–337.

    Article  PubMed  CAS  Google Scholar 

  • Cheatham B. and Kahn C.R. “Cysteine 647 in the insulin receptor is required for normal covalent interaction between ?-and ?-subunits and signal transduction.” Journal of Biological Chemistry 267 (1992): 7108–7115.

    PubMed  CAS  Google Scholar 

  • Christiansen K., Tranum-Jensen J., Carlsen J. and Vinten J. “A model for the quaternary structure of human placental insulin receptor deduced from electron microscopy.” Proceedings of the National Academy of Sciences, USA 88 (1991): 249–252.

    CAS  Google Scholar 

  • Cuatrecasas P. “Insulin-receptor interactions in adipose tissue cells: direct measurement and properties.” Proceedings of the National Academy of Sciences, USA 68 (1971):1264–1268.

    CAS  Google Scholar 

  • De Vos A.M., Ultsch M. and Kossiakoff A.A. “Crystals of the complex between human growth hormone and the extracellular domain of its receptor.” Science 255 (1992): 306–312.

    PubMed  Google Scholar 

  • Dickinson C.D., Veerapandian B., Dai X-P., Hamlin R.C., Xuong N-H., Ruoslahti E. and Ely K.R. “Crystal structure of the tenth type III cell adhesion module of human fibronectin.” Journal of Molecular Biology 236 (1992): 1079–1092.

    Google Scholar 

  • Downing A.K., Knott V., Werner J.M., Cardy C.M., Campbell I.D. and Handford P.A. “Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders.” Cell, 85 (1996): 597–605.

    Article  PubMed  CAS  Google Scholar 

  • Ebina Y., Ellis L., Jarnagin K., Edery M., Graft L., Clauser E., Ou J-H; Masiarz F; Kan Y.W., Goldfine I.D, Roth R.A. and Rutter W.J. “The human insulin receptor cDNA: the structural basis for hormoneactivated transmembrane signalling.” Cell 40 (1985): 747–758.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez R., Tabarini D., Azpiazu N., Frasch M. and Schlessinger J. “The Drosophila insulin receptor homolog-a gene essential for embryonic development encodes two receptor isoforms with different sigaling potential.” EMBO Journal 14 (1995): 3373–3384.

    PubMed  CAS  Google Scholar 

  • Garrett T.P.J., Mckern N.M., Lou M.Z., Frenkel M.J., Bentley J.D., Lovrecz G.O., Elleman T.C., Cosgrove L.J. and Ward C.W. “Crystal structure of the first three domains of the type-1 insulin-like growth factor receptor.” Nature 394 (1998): 395–399.

    Article  PubMed  CAS  Google Scholar 

  • Graf R., Neuenschwander S., Brown M.R. and Ackermann U. “Insulin-mediated secretion of ecdysteroids from mosquito ovaries and molecular cloning of the insulin receptor homologue from ovaries of bloodfed Aedes aegyptiInsect Molecular Biology 6 (1997): 151–163.

    PubMed  CAS  Google Scholar 

  • Hubbard S.R., Wei L., Elis L. and Hendrickson W.A. “Crystal structure of the tyrosine kinase domain of the human insulin receptor.” Nature 372 (1994): 746–754.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs S., Hazum, E., Shechter, Y. and Cuatrecasas, P. “Insulin receptor: covalent labeling and identification of subunits.” Proceedings of the National Academy of Sciences, USA. 76 (1979): 4918–4921.

    CAS  Google Scholar 

  • Kabat E.A., Wu T.T., Perry H.M., Gottesman K.S. and Foeller C. Sequences of Proteins of Immunological Interest. 5th edition, (1991). US Department of Health and Human Services, Bethesda, MD.

    Google Scholar 

  • Kasuga M., Karlsson F.A. and Kahn C.R. “Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor.” Science 215 (1982): 185–187.

    PubMed  CAS  Google Scholar 

  • Kobe B. and Deisenhofer J. “Proteins with leucine-rich repeats.” Current Opinion in Structural Biology 5 (1995): 409–416.

    Article  PubMed  CAS  Google Scholar 

  • Leahy D.J., Hendrickson W.A., Aukhil I. and Erickson H.P. “Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein.” Science 258 (1992): 987–991.

    PubMed  CAS  Google Scholar 

  • Lu K. and Guidotti G. “Identification of the cysteine residues involved in the class I disulfide bonds of the human insulin receptor: properties of insulin receptor monomers.” Molecular Biology of the Cell. 7 (1996): 679–691.

    PubMed  CAS  Google Scholar 

  • Luo R.Z.T., Beniac D.R., Fernandes A., Yip C.C. and Ottensmeyer F.P. “Quaternary structure of the insulin-insulin receptor complex.” Science 285 (1999): 1077–1080.

    Article  PubMed  CAS  Google Scholar 

  • Macaulay S.L., Polites M., Hewish D.R. and Ward C.W. “Cysteine-524 is not the only residue involved in the formation of disulflde-bonded dimers of the insulin receptor.” Biochemical Journal 303 (1994): 575–581.

    PubMed  CAS  Google Scholar 

  • Marino-Buslje C., Mizuguchi K., Siddle K. and Blundell T.L. “A third fibronectin type III domain in the extracellular region of the insulin receptor family.” FEBS Letters 441 (1998): 331–336.

    Article  PubMed  CAS  Google Scholar 

  • McDonald N.Q., Murray-Rust J., and Blundell, T.L. “The first structure of a receptor tyrosine kinase domain-a further step in understanding the molecular basis of insulin action.” Structure 3 (1995): 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Mulhern T.D., Booker G.W., and Cosgrove L.: “A third fibronectin type-Ill domain in the insulin-family receptors.” Trends in Biochemical Sciences 23 (1998): 465–466.

    Article  PubMed  CAS  Google Scholar 

  • O’Bryan J.P., Frye R.A., Cogswell P.C., Neubauer Z., Kitch B., Prokop C., Espinosa III R.; Le Beau M.M., Earp H.S., and Liu E.T. “axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase.” Molecular and Cellular Biology 11 (1991): 5016–5031.

    Google Scholar 

  • Ruan Y.M., Chen C., Cao Y.X. and Garofalo R.S. “The Drosophila insulin receptor contains a novel carboxy-terminal extension likelt to play an important role in signal transduction.” Journal of Biological Chemistry 270 (1995): 4236–4243.

    PubMed  CAS  Google Scholar 

  • Schaefer E.M., Erickson H.P., Federwisch M., Wollmer A., and Ellis L. “Structural organization of the human insulin receptor ectodomain.” Journal of Biological Chemistry 267 (1992): 23393–23402.

    PubMed  CAS  Google Scholar 

  • Schaffer L. and Ljungqvist L. “Identification of a disulfide bridge connecting the alpha-subunits of the extracellular domain of the insulin receptor.” Biochemical and Biophysical Research Communications 189 (1992): 650–653.

    Article  PubMed  CAS  Google Scholar 

  • Schäffer L. and Hansen P.H. “Partial characterization of the disulphide bridges of the soluble insulin receptor.” Experimental and Clinical Endocrinology and Diabetes. 104 (Suppl. 2, 1996): 89.

    Google Scholar 

  • Shier P. and Watt V.M. “Primary structure of a putative receptor for a ligand of the insulin family.” Journal of Biological Chemistry 264 (1989): 14605–14608.

    PubMed  CAS  Google Scholar 

  • Sparrow L.G., Mckern N.M., Gorman J.J., Strike P.M., Robinson C.P., Bentley J.D., and Ward C.W. “The disulfide bonds in the C-terminal domains of the human insulin receptor ectodomain.” Journal of Biological Chemistry 272 (1997): 29460–29467.

    Article  PubMed  CAS  Google Scholar 

  • Steinbacher S., Seckler R., Miller S., Steipe B., Huber R., and Reinemer P. “Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer.” Science 265 (1994): 383–386.

    PubMed  CAS  Google Scholar 

  • Stetefeld J., Mayer U., Timpl R., and Huber R. “Crystal structure of three consecutive laminin-type epidermal growth factor-like (LE) modules of laminin gamma-1 chain harboring the nidogen binding site.” Journal of Molecular Biology 257 (1996): 644–657.

    Article  PubMed  CAS  Google Scholar 

  • Tranum-Jensen J., Christiansen K., Carlsen J., Brenzel G., and Vinten J. “Membrane topology of insulin receptors reconstituted into lipid vesicles.” Journal of Membrane Biology 140 (1994): 215–223.

    PubMed  CAS  Google Scholar 

  • Tulloch P.A., Lawrence L.J., McKern N.M., Robinson C.P., Bentley J.D., Cosgrove L. et al. “Single-molecule imaging of human insulin receptor ectodomain and its Fab complexes.” Journal of Structural Biology 125 (1999): 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich A., Coussens L., Hayflick J.S., Dull T.J., Gray A., Tam A.W., Lee J., Yarden Y., Libermann T.A., Schlessinger J., Downard J., Mayes E.L.V., Whittle N., Waterfield M.D., and Seeburg P.H. “Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells.” Nature 309 (1984): 418–425.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich A.; Bell J.R., Chen E.Y., Herrara R., Petruzelli L.M., Dull T.J., Gray A., Coussens L., Liao Y-C., Tsubokawa M., Mason A., Seeburg P.H., Grunfeld C., Rosen O.M., and Ramachandran J. “Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes.” Nature 313 (1985): 756–761.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich A., Gray A., Tam A.W., Yang-Feng T., Tsubokawa M., Collins C., Henzel W., Le Bon T., Kathuria S., Chen E., Jacobs S., Francke U., Ramachandran J., and Fujita-Yamaguchi Y. “Insulinlike growth factor 1 receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity.” EMBO Journal 5 (1986): 2503–2512.

    PubMed  CAS  Google Scholar 

  • Ward C.W. “Members of the insulin receptor family contain three fibronectin type III domains.” Growth Factors 16 (1999): 315–322.

    Article  PubMed  CAS  Google Scholar 

  • Ward C.W.; Hoyne P.A. and Flegg R.H. “Insulin and epidermal growth factor receptors contain the cysteine repeat motif found in the tumor necrosis factor receptor.” Proteins: Structure Function and Genetics. 22 (1995): 141–153.

    Article  CAS  Google Scholar 

  • Woldin C.N., Hing F.S., Lee J., Pilch P.F., and Shipley G.G. “Structural studies of the detergentsolubilized and vesicle-reconstituted insulin receptor.” Journal of Biological Chemistry 274 (1999): 34981–34992.

    Article  PubMed  CAS  Google Scholar 

  • Yoder M.D., Lietzke S.E., and Jurnak F. “Unusual structural features in the parallel beta-helix in pectate lyases.” Structure 1 (1993): 241–251.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ward, C.W., Garrett, T.P.J., McKern, N.M., Sparrow, L.G., Frenkel, M.J. (2002). Structural Relationships between Members of the Insulin Receptor Family. In: Dieken, M.L., Federwisch, M., De Meyts, P. (eds) Insulin & Related Proteins - Structure to Function and Pharmacology. Springer, Dordrecht. https://doi.org/10.1007/0-306-47582-0_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-47582-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0655-5

  • Online ISBN: 978-0-306-47582-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics