Skip to main content

Memories after Silicon

  • Chapter
Emerging Memories
  • 268 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. H. Klauk, et al, “Fast Organic Thin-Film Transistor Circuits”, IEEE Electron Device Letters, Vol. 20, No. 6, June 1999.

    Google Scholar 

  2. H. Klauk, et al, “Pentacene Organic Thin-Film Transistors for Circuit and Display Applications”, IEEE Transactions on Electron Devices, Vol. 46, No. 6. June, 1999, pp1258.

    Article  Google Scholar 

  3. C.D. Sheraw et al (Pennsylvania State U.) “Fast Organic Circuits on Flexible Polymeric Substrates”, IEDM 2000.

    Google Scholar 

  4. T. Kawase et al (Cavendish Labs, Cambridge), and T. Shimode (Epson Cambridge Lab) “All Polymer Thin Film Transistors Fabricated by High Resolution Ink-jet Printing”, IEDM 2000.

    Google Scholar 

  5. P. Clarke, “Plastic Chips, Single Electron Devices Emerge From Lab”, EE Times, Dec. 14, 2000.

    Google Scholar 

  6. M.A. Alam, et al, “A Two-Dimensional Simulation of Organic Transistors”, (Agere), IEEE Transactions on Electron Devices, Vol. 44, No.8, August, 1997, pp1332.

    Google Scholar 

  7. M.G. Kane, et al, “Analog and Digital Circuits Using Organic Thin-Film Transistors on Polyester Substrates”, IEEE Electron Device Letters, Vol. 21, No. 11, November 2000, pp534

    Article  Google Scholar 

  8. I. Kymissis, et al, “High-Performance Bottom Electrode Organic Thin-Film Transistors”, (IBM) IEEE Transactions on Electron Devices, Vol. 48, No. 6, June 2001.

    Google Scholar 

  9. D.M. de Leeuw, et al, “Polymeric Integrated Circuits and Light-Emitting Diodes”, (Philips) IEDM, December 1997.

    Google Scholar 

  10. A.S. Vedeneev et al (U. of Toronto), “Molecular Scale Rectifying Diodes Based on Y-Junction Carbon Nanotubes”, IEDM 1999.

    Google Scholar 

  11. T. Rueckes et al (Harvard U.), “Carbon Nanotube Based Nonvolatile Random Access Memory for Molecular Computing”, Science, July 7, 2000.

    Google Scholar 

  12. P.G. Collins, M.S. Arnold, P. Avouris, “Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown”, Science, Vol. 292, April 27, 2001, pp706.

    Google Scholar 

  13. A. Backtold, et al, “Logic Circuits with Carbon Nanotube Transistors”, Science, Vol. 294, Nov. 9, 2001, pp1317.

    Google Scholar 

  14. R. C. Johnson, “IBM nanotubes may enable molecular-scale chips”, EE Times, April 26, 2001.

    Google Scholar 

  15. S. Zimmermann and A. Wixforth et al (Ludwig-Maximillians Universitat, Munich, Germany), “A Semiconductor-Based Photonic Memory Cell”, Science, February 26, 1999.

    Google Scholar 

  16. C.P. Collier, et al, “Electronically Configurable Molecular-Based Logic Gates”, Science, Vol. 285, July 16, 1999, pp391.

    Google Scholar 

  17. M.A. Reed, “Prospects for Molecular-Scale Devices”, IEDM, December 1999, pp227.

    Google Scholar 

  18. M.A. Reed, et al, “The Design and Measurement of Molecular Electronic Switches and Memories”, ISSCC, February 2001, pp114.

    Google Scholar 

  19. E. Smalley, “Molecules make short-term memory”, TRN News, June 27, 2001.

    Google Scholar 

  20. E. Smalley, “HP maps molecular memory”, TRN News, July 18, 2001.

    Google Scholar 

  21. C. Sachdev, “Molecule makes mini memory”, TRN News, August 15, 2001.

    Google Scholar 

  22. M. Ouyang, et al, “Energy Gaps in “Metallic” Single-Walled Carbon Nanotubes”, Science, Vol. 292, April 27, 2001.

    Google Scholar 

  23. Y. Huang, et al, “Logic Gates and Computation from assembled Nanowire Building Blocks:, Science, Vol. 294, November 9, 2001, pp 1313.

    Google Scholar 

  24. S. Prakesh, et al, “A guidline for Designing Chalcogenide-Based Glasses for Threshold Switching Characteristics”, IEEE Electron Device Letters, Vol. 18, No. 2, February, 1997, pp45.

    Google Scholar 

  25. S.J. Fellenstein, “microprocessors revolutionize materials testing industry”, Tooling and Production, September 2000.

    Google Scholar 

  26. S. Bernacki, et al, “Total dose radiation response and high temperature imprint characteristics of chalcogenide based RAM resistor elements”, IEEE Trans. on Nuclear Science.

    Google Scholar 

  27. T.F. Blake, “Investigation of Ge2Te2Sb5 chalcogenide films for use as an analog memory”, Air University Research Database, Oct. 20, 2000.

    Google Scholar 

  28. G. Wicker, et al, “Nonvolatile, High Density, High Performance Phase Change Memory”, from 〈http://rk.gsfc.nasa.gov/richcontent/MAPLDCon99/ Presentations/P21_Tyson_S.ppt”, 1999.

  29. R.A. Soref, “Silicon-Based Photonic Devices”, ISSCC, February 1995, pp66.

    Google Scholar 

  30. L. Sivitz, “When the Chips are Down”, Science News, Vol. 158, November 25, 2000, pp350.

    Google Scholar 

  31. H. Sirringhaus, et al, “Integrated Optoelectronic Devices Based on Conjugated Polymers”, Science, Vol. 280, June 12, 1998, pp1741.

    Google Scholar 

  32. Stefan Lai (Intel) and Tyler Lowrey (Ovonyx), “OUM-A 180 nm Nonvolatile Memory Cell Element Technology For Stand Alone and Embedded Applications”, IEDM, December 2001.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Memories after Silicon. In: Emerging Memories. Springer, Boston, MA. https://doi.org/10.1007/0-306-47553-7_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47553-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7684-2

  • Online ISBN: 978-0-306-47553-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics