Skip to main content

Magnetic RAMs

  • Chapter
Emerging Memories
  • 267 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. K.T.M. Ranmuthu and I.W. Ranmuthu, “High Speed (10–20ns) Non-volatile MRAM with Folded Storage Elements”, IEEE Transactions on Magnetics, Vol. 28, No. 5, September 1992, pp2359.

    Article  Google Scholar 

  2. D.D. Tang, et al, “An IC process compatible Nonvolatile Magnetic RAM”, (IBM), IEDM, December 1995, pp997.

    Google Scholar 

  3. G.B. Granley and A.T. Hurst, “Projected applications, status and plans for Honeywell high density, high performance, nonvolatile memory”, Nonvolatile Memory Technology Conference, (Honeywell) June 1996, pp 138.

    Google Scholar 

  4. S. Tehrani, et al, “High Density Nonvolatile Magnetoresistive RAM”, (Motorola), IEDM, December 1996, pp193.

    Google Scholar 

  5. J.O. Oti, and S.E. Russek, “Micromagnetic simulations of magneto-resistive behavior on micrometer spin-valve MRAM devices”, IEEE Transactions on Magnetics, April 1, 1997, pp3298.

    Google Scholar 

  6. B.A. Everitt and A.V. Pohm, “Single-domain model for pseudo spin valve MRAM cells”, IEEE Transactions on Magnetics, April 1, 1997, pp3289.

    Google Scholar 

  7. H. Boeve, et al, “Bit-selective read and write with coincident current scheme spin-valve/diode MRAM cells”, Electronics Letters, Sept. 3, 1998, pp1754.

    Google Scholar 

  8. R.E. Scheuerlein, “Magneto-resistive IC memory limitations and architecture implications”, Nonvolatile Memory Technology Conference, June 1998, pp47.

    Google Scholar 

  9. B.A. Everitt, at al, “Pseudo spin valve MRAM cells with sub-micrometer critical dimension”, IEEE Transactions on Magnetics”, July 1998, pp1060.

    Google Scholar 

  10. W.C. Jeong, et al, “A new multilayered structure for multilevel magnetoresistive random access memory (MRAM) cell”, IEEE Transactions on Magnetics, July 1998, pp1069.

    Google Scholar 

  11. S. Tehrani, et al, “Progress and outlook for MRAM technology”, (Motorola), IEEE Transactions on Magnetics, Sept. 1999, pp2814.

    Google Scholar 

  12. M. Tondra and D. Wang, “High Temperature Pinning Properties of IrMn vs. FeMn in Spin Valves”, Journal of Vacuum Science and Technology, (NVE), July 1999.

    Google Scholar 

  13. J. De Boeck & G. Borghs (IMEC, Belgium), “Magnetoelectronic Devices”, IEDM 1999, pp215.

    Google Scholar 

  14. A. Cataldo, “Japanese Play Catch-Up On Magnetic RAM Chips”, EE Times, May 3, 1999.

    Google Scholar 

  15. C. Brown, “Magnetic Semiconductors See Rapid Advances”, EE Times, October 21, 1999.

    Google Scholar 

  16. S. Tehrani, et al, “Progress and Outlook for MRAM Technology”, IEEE Transactions on Magnetics, Vol. 35, No. 5, September, 1999, pp2814.

    Article  Google Scholar 

  17. R. Zhang, et al, “Demonstration of a Four State Sensing Scheme for a Single Pseudo-Spin Valve GMR Bit”, IEEE Transactions on Magnetics, Vol. 35, No. 5, September, 1999, pp2829.

    Article  Google Scholar 

  18. H. Boeve, et al, “Technology assessment for the implementation of magnetoresistive elements with semiconductor component magnetic random access memory (MRAM) architectures”, IEEE Transactions on Magnetics, May 18, 1999, pp2820.

    Google Scholar 

  19. W.C. Jeong, et al, “An improved structure for multilevel magnetoresistive random access memory”, IEEE Transactions on Magnetics, Vol. 35, No. 5, September, 1999, pp2937.

    Google Scholar 

  20. R.C. Sousa, et al, “Vertical integration of a spin dependent tunnel junction with amorphous Si diode for MRAM application”, IEEE Transactions on Magnetics, Sept. 1999, pp2832.

    Google Scholar 

  21. S. Bae, et al, “Effects of Pumping Time on GMR and Coercivity of RF-Sputtered MRAM Dual Spin-Valves”, (IME) IEEE Transactions on Magnetics, Vol. 36, No. 5, September, 2000, pp2853.

    Google Scholar 

  22. S. Bea, et al, “Effects of Initial Layer Surface Roughness on GMR Performance of Si/Cu/NiFe/Cu/Co/Cu/NiFe Dual Spin-Valves for MRAM”, IEEE Transactions on Magnetics, Vol. 36, No. 5, September 2000, pp2850.

    Google Scholar 

  23. R.C. Sousa and P.P. Freitas, “Dynamic Switching of Tunnel Junction MRAM Cell with Nanosecond Field Pulses”, IEEE Tranactions on Magnetics, Vol. 36, No. 5, September 2000, pp2770.

    Google Scholar 

  24. P.P. Freitas, et al, “Spin Dependent Tunnel Junctions for Memory and Read-Head Applications, IEEE Transactions on Magnetics, Vol. 36, No. 5, September, 2000, pp2796.

    Article  Google Scholar 

  25. M. Durlam et al (Motorola), “Nonvolatile RAM based on Magnetic Tunnel Junction Elements”, ISSCC 2000, pp130.

    Google Scholar 

  26. R. Scheuerlein et al (IBM, San Jose), “A 10ns Read and Write Non-Volatile Memory Array Using a Magnetic Tunnel Junction and FET Switch in each Cell”, ISSCC 2000, pp128.

    Google Scholar 

  27. J. Daughton, “Magnetoresistive Random Access Memory (MRAM), NVE Web page 〈www.nve.com〉, February 4, 2000.

    Google Scholar 

  28. R. Zhang (Texas Instruments), W. Black (Iowa State University) et al, “Windowed MRAM sensing scheme”, IEEE MTDT 2000, pp47.

    Google Scholar 

  29. F. Hung, “USTC puts MRAM to commercial use”, Electronics Buyers’ News, July 24, 2000.

    Google Scholar 

  30. B. Das, et al, “Universal HSPICE Macromodel for Giant Magneto-resistance Memory Bits”, IEEE Transactions on Magnetics, Vol. 36, No. 4, July 2000, pp2062.

    Article  Google Scholar 

  31. D. Wang, et al, “Magnetostatic Coupling in Spin Dependent Tunnel Junctions”, IEEE Transactions on Magnetics, Vol. 36, No. 5, September 2000, pp2802.

    Article  Google Scholar 

  32. S. Tehrani, et al, “Recent Developments in Magnetic Tunnel Junction MRAM”, (Motorola) IEEE Transactions on Magnetics, Vol. 36, No. 5, September 2000, pp2752.

    Google Scholar 

  33. S. Tehrani, et al, “Recent Developments in Magnetic Tunnel Junction MRAM”, IEEE Intermag 2000, pp DA–02.

    Google Scholar 

  34. D. Martell, “Magnetic Memory Could Herald ‘Instant-On’ PCs”, Reuters, December 7, 2000.

    Google Scholar 

  35. K. Yamada, “A Novel Sensing Scheme for a MRAM with a 5% MR Ratio”, VLSI Circuits Symposium, 2001, pp123.

    Google Scholar 

  36. P.K. Naji et al, “A 256kb 3.0V IT1MTJ Nonvolatile Magnetoresistive RAM” ISSCC, February, 2001, pp 122.

    Google Scholar 

  37. J.M. Daughten, “Advanced MRAM Concepts”, NVE web site 〈www.nve.com〉, Copyright 2/7/01.

    Google Scholar 

  38. T. Costlow, “MRAM pioneer hopes MRAMs set for liftoff”, EE Times, Sept. 6, 2001.

    Google Scholar 

  39. P. Clarke, “Infineon, IBM hone magnetic RAM strategy”, EE Etimes, April 17, 2001.

    Google Scholar 

  40. M. Clendenin, “Taiwan company seeiing MRAM foundry partner”, EE Times, May 22, 2001.

    Google Scholar 

  41. S. Parkin, “Giant Magnetoresistance in Magnetic Multilayers”, IBM web site, 〈www.chip.ibm.com〉, September 8, 2001.

    Google Scholar 

  42. S. Parkin, “Magnetic Tunnel Junctions”, IBM web site, 〈www.chip.ibm.com〉, September 8, 2001.

    Google Scholar 

  43. S. Parkin, “Magnetoelectronics”, IBM web site, 〈www.chip.ibm.com〉, Sept. 8, 2001.

    Google Scholar 

  44. W.J. Gallagher, S.S.P. Parkin, et al, “Microstructured magnetic tunnel junctions”, (IBM), J. Appl. Phys., Vol. 81, No. 8, April 15, 1997, pp741

    Google Scholar 

  45. B.A. Everitt, A.V. Pohm and J.M. Daughton, “Size dependence of switching thresholds for pseudo spin valve MRAM cells”, (NVE), J. Appl. Phys., Vol. 81, No. 8, April 15, 1997, pp4020.

    Google Scholar 

  46. J.G. Zhu, Y. Zheng and X. Lin, “Micromagnetics of small size patterned exchange Permalloy film elements”, J. Appl. Phys, Vol 81, No. 8, April 15, 1997, pp4336.

    Google Scholar 

  47. C.H. Lai, et al, “Temperature dependence of magnetoresistance in spin valves with different thicknesses of NiO”, (H.P.) J. Appl. Phys, Vol 81, No. 8, April 15, 1997, pp3989.

    Google Scholar 

  48. E. Y. Chen, “Submicron spin valve magnetoresistive random access memory cell”, (Motorola), J. Appl. Phys., Vol. 81, No. 8, April 15, 1997, pp3992.

    Google Scholar 

  49. J. Szucs, et al, “Temperature variation of the magnetoresistance in cobalt-enhanced spin-valve structures”, (Seagate), J. Appl. Phys, Vol. 81, No.8, April 15, 1997, pp4014.

    Google Scholar 

  50. J.C.S. Kools et al, “Effect of finite magnetic film thickness of Neel coupling in spin valves”, (IBM), J. Appl. Phys, Vol. 85, No. 8, April 15, 1999, pp4466.

    Google Scholar 

  51. A. V. Pohm, et al, “Effect of write field rise times on the switching thresholds of pseudo spin valve memory cells”, (NVE), J. Appl. Phys., Vol 85, No. 8, April 15, 1999, pp4771.

    Google Scholar 

  52. S.E. Russek, E.Y. Chen, et al, (NIST, Motorola) “High-speed characterization of sub-micrometer giant magnetoresistive devices”, J. Appl. Phys., Vol. 85, No. 8, April 15, 1999, pp4773.

    Google Scholar 

  53. D. Wang, et al, “Spin dependent tunnel/spin-valve devices with different pinning structures made by photolithography”, (NVE), J. Appl. Phys, Vol. 85, No. 8, April 15, 1999, pp5255.

    Google Scholar 

  54. S. Tehrani, et al, “High density submicron magnetoresistive random access memory”, (Motorola), J. Appl. Phys., Vol. 85. No. 8, April 15, 1999, pp5822.

    Google Scholar 

  55. S.S.P. Parkin, et al, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory”, (IBM), J. Appl. Phys., Vol. 85, No. 8, April 15, 1999, pp5828.

    Google Scholar 

  56. R.S. Beech, et al, “Curie point written magnetoresistive memory”, (NVE), J. Appl. Phys., Vol. 87, No. 9, May 1, 2000, pp6403.

    Google Scholar 

  57. J.G. Zhu, Y. Zheng, and G. A. Prinz, “Ultrahigh density vertical magnetoresistive random access memory”, (NRL), J. Appl. Phys., Vol. 87, No. 9, May 1, 2000, pp6668.

    Google Scholar 

  58. H. Ohno, “Making Nonmagnetic Semiconductors Ferromagnetic”, Science, Vol. 281, August 14, 1998, pp951.

    Google Scholar 

  59. M. N. Baibich, et al, “Giant Magnetoresistance of (001)Fe/(001)Cr magnetic superlattices”, Phys. Rev. Lett. 61, 2472, 1988.

    Google Scholar 

  60. B. Butler, X. Zhang and D. Nicholson, “Giant Magnetoresistance in Layered Magnetic Materials”, ORNL Review, Vol. 30, No. 3., from 〈www.ornl.gov〉.

    Google Scholar 

  61. D.J. Monsma, R. Vlutters, and J.C. Lodder, “Room Temperature-Operating Spin-Valve Transistors Formed by Vacuum Bonding”, Science, Vol. 281, July 17, 1998.

    Google Scholar 

  62. C.L Lee, “A Study of Hybrid Hall Effect Device” December 15, 2000.

    Google Scholar 

  63. B. Prince, “Applications for Emerging Memories”, Memory Strategies International, Sept. 2001.

    Google Scholar 

  64. W. Wayt Gibbs, “The Magnetic Attraction”, Scientific American, In Focus, May 1999.

    Google Scholar 

  65. R. C. Dorf, “The Hall Effect”, The Electrical Engineering Handbook, IEEE Press, 1993, pp1106.

    Google Scholar 

  66. F. Hung, “USTC puts MRAM to commercial use”, Electronic Buyers’ News, July 24, 2000.

    Google Scholar 

  67. K. Tsuji et al, 0.1 μm-rule MRAM Development using Double-Layered Hard Mask”, IEDM, December 2001.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Magnetic RAMs. In: Emerging Memories. Springer, Boston, MA. https://doi.org/10.1007/0-306-47553-7_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-47553-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7684-2

  • Online ISBN: 978-0-306-47553-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics