Skip to main content

Origin of NEMCA

  • Chapter
  • 540 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Pritchard, Electrochemical Promotion, Nature 343, 592 (1990).

    Article  Google Scholar 

  2. C.G. Vayenas, S. Bebelis, and S. Ladas, Dependence of Catalytic Rates on Catalyst Work Function, Nature 343, 625–627 (1990).

    Article  CAS  Google Scholar 

  3. S. Bebelis, and C.G. Vayenas, Non-Faradaic Electrochemical Modification of Catalytic Activity: 1. The case of Ethylene Oxidation on Pt, J. Catal. 118, 125–146 (1989).

    Article  CAS  Google Scholar 

  4. S.G. Neophytides, and C.G. Vayenas, TPD and Cyclic Voltammetric Investigation of the Origin of Electrochemical Promotion in Catalysis, J. Phys. Chem. 99, 17063–17067 (1995).

    Article  CAS  Google Scholar 

  5. C.G. Vayenas, M.M. Jaksic, S. Bebelis, and S.G. Neophytides, The Electrochemical Activation of Catalysis, in Modern Aspects of Electrochemistry, J.O.M. Bockris, B.E. Conway, and R.E. White, eds., Kluwer Academic/Plenum Publishers, New York (1996), pp. 57–202.

    Google Scholar 

  6. S. Ladas, S. Kennou, S. Bebelis, and C.G. Vayenas, Origin of Non-Faradaic Electrochemical Modification of Catalytic Activity, J. Phys. Chem. 97, 8845–8847 (1993).

    Article  CAS  Google Scholar 

  7. S. Neophytides, D. Tsiplakides, and C.G. Vayenas, Temperature-Programmed Desorption of Oxygen from Pt-films Interfaced with Y 2 O 3 -Doped ZrO 2 , J. Catal. 178, 414–428 (1998).

    Article  CAS  Google Scholar 

  8. C.G. Vayenas, and G. Pitselis, Mathematical Modeling of Electrochemical Promotion and of Metal-Support Interactions, I&EC Research 40(20), 4209–4215 (2001).

    CAS  Google Scholar 

  9. J.O’ M. Bockris, and A.K.N. Reddy, Modern Electrochemistry, Plenum Press, New York (1970), pp. 1–5.

    Google Scholar 

  10. J.O’ M. Bockris, and S.U.M. Khan, Surface Electrochemistry: A Molecular Level Approach, Plenum Press, New York (1993).

    Google Scholar 

  11. M. Stoukides, and C.G. Vayenas, Transient and steady-state vapor phase electrocatalytic ethylene epoxidation, ACS Symposium Series 178 (“Catalysis under transient conditions”) A.T. Bell and L.L. Hegedus, Eds., pp. 181–202 (1982).

    Google Scholar 

  12. C.G. Vayenas, S. Bebelis, I.V. Yentekakis, and H.-G. Lintz, Non-Faradaic Electrochemical Modification of Catalytic Activity: A Status Report (Review Paper), Catalysis Today 11(3), 303–442 (1992).

    Article  CAS  Google Scholar 

  13. J.V. Barth, Transport of adsorbates at metal surfaces: from thermal migration to hot precursors, Surf. Sci. Rep. 40, 75–149 (2000).

    Article  CAS  Google Scholar 

  14. R. Lewis, and R. Gomer, Adsorption of Oxygen on Platinum, Surf. Sci. 12, 157–176 (1968).

    Article  CAS  Google Scholar 

  15. A. Kaloyannis, and C.G. Vayenas, Non-Faradaic Electrochemical Modification of Catalytic Activity. 11. Ethane Oxidation on Pt, J. Catal. 171, 148–159 (1997).

    Article  CAS  Google Scholar 

  16. Electrodes of conductive metallic oxides, in Studies in Physical and Theoretical Chemistry, S. Trasatti, ed. Elsevier Scientific Publishing Company, Amsterdam (1980), pp. 123–125.

    Google Scholar 

  17. B.E. Conway, Bicentennial of Alessandro Volta’s Invention of the “Electric Pile”: Discovery of the Electrical Basis of Chemistry, Canadian Chemical News, 15–17 (2000).

    Google Scholar 

  18. H. Reiss, The Fermi level and the Redox potential, J. Phys. Chem. 89, 3783–3791 (1985).

    CAS  Google Scholar 

  19. H.J. Reiss, The Absolute Electrode Potential. Tying the Loose Ends, J. Electrochem. Soc. 135, 247C–258C (1988).

    CAS  Google Scholar 

  20. P.M. Gundry, and F.C. Tompkins, in Experimental Methods in Catalyst Research, R.B. Anderson, ed. Academic Press, New York (1968), pp. 100–168.

    Google Scholar 

  21. J. Hölzl, and F.K. Schulte, Work Function of Metals, in Solid Surface Physics, Springer-Verlag, Berlin (1979), pp. 1–150.

    Google Scholar 

  22. S. Trasatti, The Work Function in Electrochemistry, in Advances in Electrochemistry and Electrochemical Engineering, H. Gerisher, and C.W. Tobias, eds., Journal Wiley and Sons (1977).

    Google Scholar 

  23. N. Sato, Electrochemistry at metal and semiconductor electrodes, Elsevier, Amsterdam (1998).

    Google Scholar 

  24. W. Zipprich, H.-D. Wiemhöfer, U. Vöhrer, and W. Göpel, In-situ Photoelectron-Spectroscopy of Oxygen Electrodes on Stabilized Zirconia, Ber. Buns. Phys. Chem. 99, 1406–1413 (1995).

    CAS  Google Scholar 

  25. C.A. Cavalca, PhD Thesis, Yale University (1995).

    Google Scholar 

  26. S. Ladas, S. Bebelis, and C.G. Vayenas, Work Function Measurements on Catalyst Films subject to in-situ Electrochemical Promotion, Surf. Sci. 251/252, 1062–1068 (1991).

    Article  Google Scholar 

  27. J. Nicole, PhD Thesis, EPFL (1999).

    Google Scholar 

  28. J. Poppe, A. Schaak, J. Janek, and R. Imbihl, Electrochemically Induced Surface Changes on Microstructured Pt Films on a solid YSZ Electrolyte, Ber. Buns. Phys. Chem. 102, 1019–1022 (1998).

    CAS  Google Scholar 

  29. J. Poppe, S. Voelkening, A. Schaak, E. Schuetz, J. Janek, and R. Imbihl, Electrochemical promotion of catalytic CO oxidation on Pt/YSZ catalysts under low pressure conditions, Phys. Chem. Chem. Phys. 1, 5241–5249 (1999).

    CAS  Google Scholar 

  30. C.G. Vayenas, On the work function of the gas exposed electrode surfaces in solid state electrochemistry, J. Electroanal. Chem. 486, 85–90 (2000).

    Article  CAS  Google Scholar 

  31. C.G. Vayenas, and D. Tsiplakides, On the work function of the gas-exposed electrode surfaces in solid state electrolyte cells, Surf. Sci. 467, 23–34 (2000).

    Article  CAS  Google Scholar 

  32. D. Tsiplakides, and C.G. Vayenas, Electrode work function and absolute potential scale in solid state electrochemistry, J. Electrochem. Soc. 148(5), E189–E202 (2001).

    Article  CAS  Google Scholar 

  33. I. Riess, and C.G. Vayenas, Fermi level and potential distribution in solid electrolyte cells with and without ion spillover, Solid State Ionics in press, (2001).

    Google Scholar 

  34. D. Tsiplakides, S. Neophytides, and C.G. Vayenas, Investigation of electrochemical promotion using temperature programmed desorption and work function measurements, Solid State Ionics 136–137, 839–847 (2000).

    Google Scholar 

  35. I. Riess, What does a voltmeter measure?, Solid State Ionics 95, 327–328 (1997).

    Article  CAS  Google Scholar 

  36. C.G. Vayenas, S. Bebelis, and S. Despotopoulou, Non-Faradaic Electrochemical Modification of Catalytic Activity: 4. The use of β″-Al 2 O 3 as the solid electrolyte, J. Catal. 128, 415–435 (1991).

    Article  CAS  Google Scholar 

  37. I.V. Yentekakis, G. Moggridge, C.G. Vayenas, and R.M. Lambert, In situ controlled promotion of catalyst surfaces via NEMCA: The effect of Na on the Pt-catalyzed CO oxidation, J. Catal. 146, 292–305 (1994).

    Article  CAS  Google Scholar 

  38. S. Tracey, A. Palermo, J.P.H. Vazquez, and R.M. Lambert, In Situ Electrochemical Promotion by Sodium of the Selective Hydrogenation of Acetylene over Platinum, J. Catal. 179, 231–240 (1998).

    Article  CAS  Google Scholar 

  39. C.G. Vayenas, A. Ioannides, and S. Bebelis, Solid Electrolyte Cyclic Voltammetry for in situ Investigation of Catalyst Surfaces, J. Catal. 129, 67–87 (1991).

    Article  CAS  Google Scholar 

  40. D.A. Emery, P.H. Middleton, and I.S. Metcalfe, The effect of electrochemical current pumping on the work function of solid electrolyte supported catalysts, Surf. Sci. 405, 308–315 (1998); Electrochemical enhancement of CO oxidation over YSZ supported Pt catalysts I&II, J. Electrochem. Soc. 146(6), 2188–2193 (1999), ibid 146(6), 2194–2198 (1999).

    Article  CAS  Google Scholar 

  41. E.R. Koetz, H. Neff, and K. Mueller, A UPS, XPS and work function study of emersed silver, platinum and gold electrodes, J. Electroanal. Chem. 215, 331–344 (1986).

    Google Scholar 

  42. Z. Samec, B.W. Johnson, and K. Doblhofer, The absolute electrode potential of metal electrodes emersed from liquid electrolytes, Surf. Sci. 264, 440–448 (1992).

    Article  CAS  Google Scholar 

  43. G.F. Froment, and K.B. Bischoff, Chemical Reactor Analysis and Design, John Wiley & Sons, New York (1979).

    Google Scholar 

  44. D. Tsiplakides, S. Neophytides, and C.G. Vayenas, Thermal Desorption Study of Oxygen Adsorption on Pt, Ag and Au films Deposited on YSZ, Ionics 3, 201–208 (1997).

    CAS  Google Scholar 

  45. D. Tsiplakides, and C.G. Vayenas, Temperature Programmed Desorption of Oxygen from Ag films interfaced with Y 2 O 3 -doped ZrO 2 , J. Catal. 185, 237–251 (1999).

    Article  CAS  Google Scholar 

  46. D. Tsiplakides, S. Neophytides, and C.G. Vayenas, Investigation of Electrochemical Promotion using Temperature-Programmed-Desorption and Work Function measurements, Solid State Ionics 136–137, 839–847 (2000).

    Google Scholar 

  47. D. Tsiplakides, S. Neophytides, and C.G. Vayenas, Investigation of the state of the electrochemically generated adsorbed O species on Au films interfaced with Y 2 O 3 -doped ZrO 2 , Ionics, submitted (2001).

    Google Scholar 

  48. J.L. Falconer, and R.J. Madix, Flash desorption activation energies: DCOOH decomposition and CO desorption from Ni(110), Surf. Sci. 48, 393–405 (1975).

    Article  CAS  Google Scholar 

  49. A.J. Bard, and L.R. Faulkner, Electrochemical Methods. Fundamentals and Applications, John Wiley & Sons, Inc., New York (2001).

    Google Scholar 

  50. T. Chao, K.J. Walsh, and P.S. Fedkiw, Cyclic voltammetric study of the electrochemical formation of platinum oxide in a Pt/yttria-stabilized zirconia cell, Solid State Ionics 47, 277–285 (1991).

    CAS  Google Scholar 

  51. C.G. Vayenas, S. Bebelis, I.V. Yentekakis, and S. Neophytides, Electrocatalysis and Electrochemical Reactors, in CRC Handbook on Solid State Ionics, P.J. Gellings, and H.J.M. Bouwmeester, eds., CRC Press, Inc., Boca Raton (1997), pp. 445–480.

    Google Scholar 

  52. Y. Jiang, A. Kaloyannis, and C.G. Vayenas, High Temperature cyclic voltammetry of Pt electrodes in solid electrolyte cells, Electrochim. Acta 38(17), 2533–2539 (1993).

    Google Scholar 

  53. Y. Jiang, I.V. Yentekakis, and C.G. Vayenas, Potential-programmed reduction: A new technique for investigating chemisorption on catalysts supported on solid electrolytes, J. Catal. 148, 240–251 (1994).

    Article  CAS  Google Scholar 

  54. A.D. Frantzis, S. Bebelis, and C.G. Vayenas, Electrochemical promotion (NEMCA) of CH 4 and C 2 H 4 oxidation on Pd/YSZ and investigation of the origin of NEMCA via AC impedance spectroscopy, Solid State Ionics 136–137, 863–872 (2000).

    Google Scholar 

  55. D. Kek, M. Mogensen, and S. Pejovnik, A Study of Metal (Ni, Pt, Au)/Yttria-Stabilized Zirconia Interface in Hydrogen Atmosphere at Elevated Temperature, J. Electrochem. Soc. 148(8), A878–A886 (2001).

    Article  CAS  Google Scholar 

  56. I. Harkness, and R.M. Lambert, Electrochemical Promotion of the NO + Ethylene Reaction over Platinum, J. Catal. 152, 211–214 (1995).

    Article  CAS  Google Scholar 

  57. R.M. Lambert, I.R. Harkness, I.V. Yentekakis, and C.G. Vayenas, Electrochemical Promotion in Emission Control Catalysis, Ionics 1, 29–32 (1995).

    CAS  Google Scholar 

  58. R.M. Lambert, M. Tikhov, A. Palermo, I.V. Yentekakis, and C.G. Vayenas, Electrochemical Promotion of Environmentally Important Catalytic Reactions, Ionics 1, 366–376 (1995).

    CAS  Google Scholar 

  59. O.A. Mar’ina, I.V. Yentekakis, C.G. Vayenas, A. Palermo, and R.M. Lambert, In situ controlled Promotion of Catalyst Surfaces via NEMCA: The effect of Na on the Pt-catalyzed NO Reduction by H 2 , J. Catal. 166, 218–228 (1997).

    Google Scholar 

  60. I.R. Harkness, C. Hardacre, R.M. Lambert, I.V. Yentekakis, and C.G. Vayenas, Ethylene oxidation over Platinum: In situ electrochemical promotion using β″-Al 2 O 3 and studies with a Pt(111)/Na model catalyst, J. Catal. 160, 19–26 (1996).

    Article  CAS  Google Scholar 

  61. R.M. Lambert, F. Williams, A. Palermo, and M.S. Tikhov, Modelling alkali promotion in heterogeneous catalysis: in situ electrochemical control of catalytic reactions, Topics in Catalysis 13, 91–98 (2000).

    Article  CAS  Google Scholar 

  62. C. Pliangos, I.V. Yentekakis, S. Ladas, and C.G. Vayenas, Non-Faradaic Electrochemical Modification of Catalytic Activity: 9. Ethylene oxidation on Pt deposited on TiO 2 , J. Catal. 159, 189–203 (1996).

    Article  CAS  Google Scholar 

  63. T. Arakawa, A. Saito, and J. Shiokawa, Surface study of a Ag electrode on a solid electrolyte used as oxygen sensor, Applications of Surface Science 16, 365–372 (1983).

    Article  CAS  Google Scholar 

  64. T. Arakawa, A. Saito, and J. Shiokawa, XPS for in situ observation of an Ag electrode on a solid electrolyte used as oxygen sensor, Chem. Phys. Lett. 94, 250–252 (1983).

    Article  CAS  Google Scholar 

  65. S. Bebelis, and C.G. Vayenas, Non-Faradaic Electrochemical Modification of Catalytic Activity: 6. The epoxidation of Ethylene on Ag/ZrO 2 (8mol%)Y 2 O 3 , J. Catal. 138, 588–610 (1992).

    CAS  Google Scholar 

  66. C. Cavalca, G. Larsen, C.G. Vayenas, and G. Haller, Electrochemical Modification of CH 3 OH oxidation selectivity and activity on a Pt single-pellet catalytic reactor, J. Phys. Chem. 97, 6115–6119 (1993).

    Article  CAS  Google Scholar 

  67. B. Luerssen, S. Günther, H. Marbach, M. Kiskinova, J. Janek, and R. Imbihl, Photoelectron spectromicroscopy of electrochemically induced oxygen spillover at the Pt/YSZ interface, Chem. Phys. Lett. 316, 331–335 (2000).

    CAS  Google Scholar 

  68. U. Vöhrer, PhD Thesis, University of Tuebingen (1992).

    Google Scholar 

  69. D.I. Kondarides, G.N. Papatheodorou, C.G. Vayenas, and X.E. Verykios, In situ High Temperature SERS study of Oxygen adsorbed on Ag: Support and Electrochemical Promotion Effects, Ber. Buns. Phys. Chem. 97, 709–720 (1993).

    CAS  Google Scholar 

  70. S. Boghosian, S. Bebelis, C.G. Vayenas, and G.N. Papatheodorou, In Situ High Temperature SERS on Ag Catalysts and Electrodes during Ethylene Epoxidation, J. Catal. 117, 561–565 (1989).

    Article  CAS  Google Scholar 

  71. L. Basini, C.A. Cavalca, and G.L. Haller, Electrochemical Promotion of Oxygen Atom Back-Spillover from Yttria-Stabilized Zirconia onto a Porous Platinum Electrode: Detection of SERS Signals, J. Phys. Chem. 98, 10853–10856 (1994).

    Article  CAS  Google Scholar 

  72. A. van Oertzen, A. Mikhailov, H.-H. Rotermund, and G. Ertl, Subsurface oxygen formation on the Pt(110) surface: experiment and mathematical modeling, Surf. Sci. 350, 259–270 (1996).

    Google Scholar 

  73. K. Asakura, J. Lanterbach, H.H. Rothermund, and G. Ertl, Spatio-temporal pattern formation during catalytic CO oxidation on a Pt(100) surface modified with submonolayers of Au, Surf. Sci. 374, 125–141 (1997).

    Article  CAS  Google Scholar 

  74. S. Kelling, S. Cerasari, H.H. Rotermund, G. Ertl, and D.A. King, A photoemission electron microscopy (PEEM) study of the effect of surface acoustic waves on catalytic CO oxidation over Pt(110), Chem. Phys. Lett. 293, 325–330 (1998).

    Article  CAS  Google Scholar 

  75. M. Kolodzejczyk, R.E.R. Colen, B. Delmon, and J.H. Block, Interaction between Cu and Pt(111) in the reaction CO+O 2 modification by Cu sub-monolayers and cooperation between pure and Cu-modified Pt(111), Appl. Surf. Sci. 121/122, 480–483 (1997).

    Article  CAS  Google Scholar 

  76. R.E.R. Colen, M. Kolodziejczyk, B. Delmon, and J.H. Block, Kinetic study of CO oxidation on copper modified Pt(111), Surf. Sci. 412/413, 447–457 (1998).

    Article  CAS  Google Scholar 

  77. G. Binning, H. Rohrer, C. Gerber, and E. Weibel, Surface Studies by Scanning Tunneling Microscopy, Physical Review Letters 49(1), 57–61 (1982).

    Article  CAS  Google Scholar 

  78. M. Makri, C.G. Vayenas, S. Bebelis, K.H. Besocke, and C. Cavalca, Atomic resolution STM imaging of Electrochemically Controlled Reversible Promoter Dosing of Catalysts, Surf. Sci. 369, 351–359 (1996).

    Article  CAS  Google Scholar 

  79. M. Makri, C.G. Vayenas, S. Bebelis, K.H. Besocke, and C. Cavalca, Atomic Resolution Scanning Tunneling Microscopy Imaging of Pt Electrodes Intefaced with β″-Al 2 O 3 , Ionics 2, 248–253 (1996).

    CAS  Google Scholar 

  80. K.J. Uram, L. Ng, and J.R. Yates Jr., Electrostatic effects between adsorbed species-The K-CO interaction on Ni(111) as studied by infrared reflection-absorption spectroscopy, Surf. Sci. 177, 253–277 (1986).

    Article  CAS  Google Scholar 

  81. A. Frantzis, and C.G. Vayenas, in preparation (2001).

    Google Scholar 

  82. C.T. Campbell, G. Ertl, H. Kuipers, and J. Segner, A molecular beam study of the adsorption and desorption of oxygen from a Pt(111) surface, Surf. Sci. 107, 220–236 (1981).

    CAS  Google Scholar 

  83. G. Pacchioni, F. Illas, S. Neophytides, and C.G. Vayenas, Quantum-Chemical Study of Electrochemical Promotion in Catalysis, J. Phys. Chem. 100, 16653–16661 (1996).

    Article  CAS  Google Scholar 

  84. G. Pacchioni, J.R. Lomas, and F. Illas, Electric field effects in heterogeneous catalysis, Molecular Catalysis A: Chemical 119, 263–273 (1997).

    Article  CAS  Google Scholar 

  85. J. Xue, and R. Dieckmann. Oxygen partial pressure dependence of the oxygen content of zirconia-based electrolytes in Ionic and Mixed Conducting Ceramics Second International Symposium 94-12, 191–208 (1994) ES Meeting San Francisco, California.

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Origin of NEMCA. In: Electrochemical Activation of Catalysis. Springer, Boston, MA. https://doi.org/10.1007/0-306-47551-0_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47551-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46719-6

  • Online ISBN: 978-0-306-47551-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics