Skip to main content

Patterns in stage duration and development among marine and freshwater calanoid and cyclopoid copepods: a review of rules, physiological constraints, and evolutionary significance

  • Chapter
Copepoda: Developments in Ecology, Biology and Systematics

Part of the book series: Developments in Hydrobiology ((DIHY,volume 156))

Abstract

Studies of development time of marine and freshwater copepods have taken separate tracks. Most studies on marine copepods report development time of each individual development stage, whereas studies on freshwater copepods report only development time, from egg to nauplius and nauplius to adult. This bias allows comparison of total development time but prevents detailed comparisons of patterns in stage-specific developmental schedules. With respect to egg to adult development time, three general relationships are known: developmental rates are dependent upon temperature and food concentration but independent of terminal body size; freshwater calanoids develop significantly slower than marine calanoids; freshwater cyclopoids develop at the same rate as marine calanoids. Two rules describe stage-specific developmental rates: the equiproportional rule and the isochronal rule. The first rule states that the duration of a given life history stage is a constant proportion of the embryonic development time; the second rule states that the time spent in each stage is the same for all stages. This review focuses on the second rule. From the 80+ published studies of copepod stage-specific developmental times, no species follows the isochronal rule strictly: Acartia spp. come closest with isochronal development from third nauplius (N3) to fourth copepodite (C4). The only pattern followed by all species is rapid development of the first and/or second naupliar stages, slow development of the second and/or third nauplius and prolonged development of the final copepodite stage. Once adulthood is reached, males are usually short-lived, but females can live for weeks to months in the laboratory. Adult longevity in the sea is, however, on the order of only a few days. The evolution of developmental patterns is discussed in the context of physiological constraints, along with consideration of possible relationships between stage-specific mortality rates and life history strategies. Physiological constraints may operate at critical bottlenecks in development (e.g. at the first feeding nauplius, N6, and the fifth copepodite stage). High mortality of eggs may explain why broadcast eggs hatch 2–3 times faster than eggs carried by females in a sac; high mortality of adults may explain why adults do not grow rather they maximize their reproductive effort by partitioning all energy for growth into egg production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ban, S., 1994. Effect of temperature and food concentration on post-embryonic development, egg production and adult body size of calanoid copepod Eurytemora affinis. J. Plankton Res. 16: 721–735.

    Google Scholar 

  • Beckman, B. R. & W. T. Peterson, 1986. Egg production by Acartia tonsa in Long Island Sound. J. Plankton Res. 8: 917–925.

    Google Scholar 

  • Berggreen, U., B. Hansen & T. Kiørboe, 1988. Food size spectra, ingestion and growth of the copepod Acartia tonsa: implications for the determination of copepod production. Mar. Biol. 99: 341–352

    Article  Google Scholar 

  • Corkett, C. J. & I. A. McLaren, 1970. Relationships between development rate of eggs and older stages of copepods. J. mar. biol. Ass. U.K. 50: 161–168.

    Google Scholar 

  • Corkett, C. J., I. A. McLaren & J.-M. Sevigny, 1984. The rearing of the marine calanoid copepods Calanus finmarchicus (Gunnerus), C. glacialis Jaschnov and C. hyperboreus Kröyer with comment on the equiproportional rule. Syllogeus 58: 539–546.

    Google Scholar 

  • Epp, R. W. & W. M. Lewis Jr., 1980. The. nature and ecological significance of metabolic changes during the life history of copepods. Ecology 61: 259–264.

    ISI  Google Scholar 

  • Escribano, R., L. Rodriguez & C. Irribarren, 1997. Temperature-dependent development and growth of Calanus chilensis Brodsky from northern Chile. J. exp. mar. Biol. Ecol. 229: 19–34.

    Google Scholar 

  • Fernandez, F., 1979. Nutrition studies in the nauplius larva of Calanus pacificus (Copepoda: Calanoida). Mar. Biol. 53: 131–147.

    CAS  Google Scholar 

  • Fryd, M., O. H. Haslund & O. Wohlgemuth, 1991. Development, growth and egg production of the two copepod species Centro-pages hamatus and Centropages typicus in the laboratory. J. Plankton Res. 13: 683–689.

    Google Scholar 

  • Hansen, A.-M. & B. Santer, 1995. The influence of food resources on the development, survival and reproduction of the two cyclopoid copepods: Cyclops vicinus and Mesocyclops leuckarti. J. Plankton Res. 17: 631–646.

    Google Scholar 

  • Haq, S. M., 1965. The larval development of Oithonina nana. J. Zool. 146: 555–566.

    Google Scholar 

  • Hart; R. C., 1990. Copepod post-embryonic durations: pattern, conformity and predictability. The realities of isochronal and equiproportional development, and trends in the copepod-naupliar duration ratio. Hydrobiologia 206: 175–205.

    ISI  Google Scholar 

  • Hart, R. C., 1991. Food and suspended sediment influences on the naupliar and copepodid durations of freshwater copepods: comparative studies on Tropodiaptomus and Metadiaptomus. J. Plankton Res. 13: 645–660.

    Google Scholar 

  • Hart, R. C., 1994. Equiproportional temperature-duration responses and thermal influences on distribution and species switching in the copepods Metadiaptomus meridianus and Tropodiaptomus spectabilis. Hydrobiologia 272: 163–183.

    ISI  Google Scholar 

  • Hart, R. C., 1996. Naupliar and copepodite growth and survival of two freshwater calanoids at various food levels: demographic constraints, similarities, and food needs. Limnol. Oceanogr. 41: 648–658.

    Google Scholar 

  • Hart, R. C., 1998. Copepod equiproportional development: experimental confirmation of its independence of food supply level, and a conceptual model accounting for apparent exceptions. Hydrobiologia 380: 77–85.

    Article  ISI  Google Scholar 

  • Hirst, A. G. & R. S. Lampitt., 1998. Towards a global model of in situ weight-specific growth in marine planktonic copepods. Mar. Biol. 132: 247–257.

    Article  Google Scholar 

  • Ianora, A., 1998. Copepod life history traits in subtemperate regions. J. mar. Sys. 15: 337–349.

    Google Scholar 

  • Jerling, H. L. & T. H. Wooldridge, 1991. Population dynamics and estimates of production for the calanoid copepod Pseudodiaptomus hessei in a warm temperate estuary. Estuar. Coast. Shelf Sci. 33: 121–135.

    Google Scholar 

  • Johnson, J. K., 1981. Population dynamics and cohort persistence of Acartia californiensis (Copepoda: Calanoida) in Yaquina Bay, Oregon. Ph.D. Dissertation, Oregon State University, Corvallis, Oregon: 305 pp.

    Google Scholar 

  • Johnson, T. D., 1987. Growth and regulation of the population of Parvocalanus crassirostris (Copepoda, Calanoida) in Long Island Sound, New York. Ph.D. Dissertation, State University of New York at Stony Brook: 191 pp.

    Google Scholar 

  • Kimoto, K., S. Uye & T. Onbé, 1986. Growth characteristics of a brackish-water calanoid copepod Sinocalanus tenellus in relation to temperature and salinity. Bull. Plankton Soc. Japan 33: 43–57.

    Google Scholar 

  • Kiørboe, T., F. Møhlenberg & P. Tiselius, 1988. Propagation in marine planktonic copepods: production and mortality of eggs. Hydrobiologia 167/168: 219–225.

    Google Scholar 

  • Kiørboe, T. & M. Sabatini, 1995. Scaling of fecundity, growth and development in marine planktonic copepods. Mar. Ecol. Prog. Ser. 120: 285–298.

    Google Scholar 

  • Kiørboe, T. & M. Sabatini, 1994. Reproductive and life cycle strategies in egg-carrying cyclopoid and free-spawning calanoid copepods. J. Plankton Res. 16: 1353–1366.

    Google Scholar 

  • Klein Breteler, W. C. M., 1980. Continuous breeding of marine pelagic copepods in the presence of heterotrophic dinoflagellates. Mar. Ecol. Prog. Ser. 2: 229–233.

    Google Scholar 

  • Klein Breteler, W. C. M. & S. R. Gonzalez, 1984. Culture and development of Temora longicornis (Copepoda, Calanoida), at different conditions of temperature and food. Syllogeus 58: 71–84.

    Google Scholar 

  • Klein Breteler, W. C. M. & N. Schogt, 1994. Development of Acartia clausi (Copepoda, Calanoida) cultured at different conditions of temperature and food. Hydrobiologia 292/293: 469–479.

    Article  Google Scholar 

  • Klein Breteler, W. C. M., S. R. Gonzalez & N. Schogt, 1995. Development of Pseudocalanus elongatus (Copepoda, Calanoida) cultured at different temperature and food conditions. Mar. Ecol. Prog. Ser. 119: 99–110.

    Google Scholar 

  • Klein Breteler, W. C. M., N. Schogt & J. Van Der Meer, 1994. The duration of copepod life stages estimated from stage-frequency data. J. Plankton Res. 16: 1039–1057.

    Google Scholar 

  • Kumar, R. & T. R. Rao, 1998. Post-embryonic developmental rates as a function of food type in the cyclopoid copepod Mesocyclops thermocyclopoides Harada. J. Plankton Res. 20: 271–287.

    Google Scholar 

  • Landry, M. R., 1975. The relationship between temperature and the development of life stages of the marine copepod Acartia clausi Giesbr. Limnol. Oceanogr. 20: 854–857. Landry, M. R. 1978. Population dynamics and production of a planktonic marine copepod, Acartia clausii, in a small temperate lagoon on San Juan Island, Washington. Int. Rev. ges. Hydrobiol. 63: 77–119.

    Google Scholar 

  • Landry, M. R., 1983. The development of marine calanoid copepods with comments on the isochronal rule. Limnol. Oceanogr. 28: 614–624.

    Google Scholar 

  • Liang, D. & S. Uye, 1996. Population dynamics and production of the planktonic copepods in a eutrophic inlet of the Inland Sea of Japan. II. Acartia omorii. Mar. Biol. 125: 109–117.

    Google Scholar 

  • Liang, D., S. Uye & T. Onbé, 1996. Population dynamics and production of the planktonic copepods in a eutrophic inlet of the Sea of Japan. I. Centropages abdominalis. Mar. Biol. 124: 527–536.

    Google Scholar 

  • Lonsdale, D. J., 1981. Regulatory role of physical factors and predation for two Chesapeake Bay copepod species. Mar. Ecol. Prog. Ser. 5: 341–351.

    Google Scholar 

  • Marshall, S. M. & A. P. Orr, 1955. The biology of a marine copepod Calanus finmarchicus (Gunnerus). Oliver & Boyd, Edinburgh: 188 pp.

    Google Scholar 

  • Matthews, J. B. L., 1964. On the biology of some bottom-living copepods (Aetideidae and Phaennidae) from Norway. Sarsia 16: 1–46.

    Google Scholar 

  • Mavuti, K. M., 1994. Durations of development and production estimates by two crustacean zooplankton species Thermocyclops oblongatus Sars (Copepoda) and Diaphanosoma excisum Sars (Cladocera) in Lake Naivasha, Kenya. Hydrobiologia 272: 185–200.

    Article  ISI  Google Scholar 

  • Mazzocchi, M. G. & G.-A. Paffenhöfer, 1998. First observations on the biology of Clausocalanus furcatus (Copepoda, Calanoida). J. Plankton Res. 20: 331–342.

    Google Scholar 

  • McLaren, I. A., 1966. Predicting development rate of copepod eggs. Biol. Bull. 131: 457–469.

    Google Scholar 

  • Mengestou, S. & C. H. Fernando. 1991. Biomass and production of the major dominant crustacean zooplankton in a tropical Rift Valley lake, Awasa, Ethiopia. J. Plankton Res. 13: 831–851.

    Google Scholar 

  • Miller, C. B., J. K. Johnson & D. R. Heinle, 1977. Growth rules in the marine copepod genus Acartia. Limnol. Oceanogr. 22: 326–335.

    Article  Google Scholar 

  • Mullin, M. M. & E. R. Brooks., 1970. Growth and metabolism of two planktonic, marine copepods as influenced by temperature and type of food. In Steele, J. J. (ed.), Marine Food Chains. University of California Press, Berkeley, California: 74–95.

    Google Scholar 

  • Ohman, M. D. & S. N. Wood, 1996. Mortality estimation for planktonic copepods: Pseudocalanus newmani in a temperate fjord. Limnol. Oceanogr. 41: 126–135.

    CAS  Google Scholar 

  • Ough, K. & I. A. E. Bayly, 1989. Salinity tolerance, development rates and predation capabilities of Sulcanus conflictus Nicholls (Copepoda: Calanoida). Estuar. coast. shelf Sci. 28: 195–209.

    Google Scholar 

  • Paffenhöfer, G.-A., 1993. On the ecology of marine cyclopoid copepods (Crustacea, Copepoda, Cyclopoida). J. Plankton Res. 15: 37–55.

    Google Scholar 

  • Paffenhöfer, G.-A & R. P. Harris., 1976. Feeding, growth and reproduction of the marine planktonic copepod Pseudocalanus elongatus Boeck. J. mar. biol. Assoc. U.K. 56: 327–344.

    Google Scholar 

  • Peterson, W. T., 1980. Life history and ecology of Calanus marshallae Frost in the Oregon upwelling zone. Ph.D. Dissertation, Oregon State University, Corvallis, Oregon: 200 pp.

    Google Scholar 

  • Peterson, W. T., 1985. Abundance, age structure and in situ egg production rates of the copepod Temora longicornis in Long Island Sound, New York. Bull. mar. Sci. 37: 726–738.

    Google Scholar 

  • Peterson, W. T., 1986. Development, growth and survivorship of the copepod Calanus marshallae in the laboratory. Mar. Ecol. Prog. Ser. 29: 61–72.

    Google Scholar 

  • Peterson, W. T. & W. J. Kimmerer, 1994. Processes controlling recruitment of the marine calanoid copepod Temora longicornis in Long Island Sound: egg production, egg mortality and cohort survival rates. Limnol. Oceanogr. 39: 1594–1605.

    Article  Google Scholar 

  • Peterson, W. T. & S. J. Painting, 1991. Developmental rates of the copepods Calanus australis and Calanoides carinatus in the laboratory, with discussion of methods used for calculation of development time. J. Plankton Res. 12: 283–293.

    Google Scholar 

  • Sabatini, M. & T. Kiørboe, 1994. Egg production, growth and development of the cyclopoid copepod Oithona similis. J. Plankton Res. 10: 1329–1351.

    Google Scholar 

  • Saiz, E. & M. Alcaraz, 1991. Effects of small-scale turbulence on development time and growth of Acartia grani (Copepoda: Calanoida). J. Plankton Res. 13: 873–883.

    Google Scholar 

  • Santer, B. & F. Van Den Bosch, 1994. Herbivorous nutrition of Cyclops vicinus: the effect of a pure algal diet on feeding, development, reproduction and life cycle. J. Plankton Res. 16: 171–195.

    Google Scholar 

  • Santer, B., 1994. Influences of food type and concentration on the development of Eudiaptomus gracilis and implications for interactions between calanoid and cyclopoid copepods. Arch. Hydrobiol. 131: 141–159.

    Google Scholar 

  • Thompson, B. M., 1982. Growth and development of Pseudocalanus elongatus and Calanus sp. in the laboratory. J. mar. biol. Ass. U.K. 62: 359–372.

    Google Scholar 

  • Toth, L. G. & K. Kato, 1996. Development of Eudiaptomus japonicus Burckhardt (Copepoda, Calanoida) reared on different sized fractions of natural plankton. J. Plankton Res. 18: 819–834.

    Google Scholar 

  • Trinast, E., 1976. A preliminary note on Acartia californiensis, a new calanoid copepod from Newport Bay, California. Crustaceana 31: 54–58.

    Google Scholar 

  • Trujillo-Ortiz, A., 1990. Hatching success, egg production and development time of Acartia californiensis Trinast (Copepoda: Calanoida) under laboratory conditions. Ciencias Marinas 16: 1022.

    Google Scholar 

  • Uchima, M., 1979. Morphological observations of developmental stages in Oithona brevicornis (Copepoda, Cyclopoida). Bull. Plankton Soc. Japan. 26: 59–76.

    Google Scholar 

  • Uchima, M. & R. Hirano, 1986. Food of Oithona davisae (Copepoda: Cyclopoida) and the effect of food concentration at first feeding on the larval growth. Bull. Plankton Soc. Japan 33: 21–28.

    Google Scholar 

  • Uye, S., 1980. Development of neritic copepods Acartia clausi and A. steuri. II. Isochronal larval development at various temperatures. Bull. Plankton Soc. Japan 27: 11–18.

    Google Scholar 

  • Uye, S., 1982. Population dynamics and production of Acartia clausi Giesbrecht (Copepoda: Calanoida) in inlet waters. J. exp. mar. Biol. 57: 55–83.

    Google Scholar 

  • Uye, S., 1988. Temperature-dependent development and growth of Calanus sinicus (Copepoda: Calanoida) in the laboratory. Hydrobiologia 167/168: 285–293.

    Article  Google Scholar 

  • Vidal, J., 1980. Physioecology of zooplankton. I. Effects of phytoplankton concentration, temperature and body size on the growth rate of Calanus pacificus and Pseudocalanus sp. Mar. Biol. 56: 111–134.

    Google Scholar 

  • Whitehouse, J. W. & B. G. Lewis, 1973. The effect of diet and density on development, size and egg production in Cyclops abyssorum Sars, 1863 (Copepoda, Cyclopoida). Crustaceana 25: 225–236.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Peterson, W.T. (2001). Patterns in stage duration and development among marine and freshwater calanoid and cyclopoid copepods: a review of rules, physiological constraints, and evolutionary significance. In: Lopes, R.M., Reid, J.W., Rocha, C.E.F. (eds) Copepoda: Developments in Ecology, Biology and Systematics. Developments in Hydrobiology, vol 156. Springer, Dordrecht. https://doi.org/10.1007/0-306-47537-5_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-47537-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7048-2

  • Online ISBN: 978-0-306-47537-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics