Skip to main content

Harpacticoid copepods are successful in the soft-bottom deep sea

  • Chapter
Copepoda: Developments in Ecology, Biology and Systematics

Part of the book series: Developments in Hydrobiology ((DIHY,volume 156))

Abstract

Different taxa have had different degrees of success in invading and proliferating in the deep sea. The reasons for these differences are not well known, and exemplars need to be studied to provide insight as to factors that lead to success in the deep sea. Because the abundance of the deep-sea fauna taken as a whole declines with depth, the absolute abundance of a taxon is not an appropriate metric of its success. Rather, a taxon whose abundance declines as rapidly as or less rapidly than the general trend should be considered successful. In this paper, I used the macrofauna to define the general trend of abundance change with depth. When I compared the trend of abundance of harpacticoids to that for macrofauna, I found that harpacticoid abundance decreased less rapidly. Thus, harpacticoids are unusually successful in the deep sea. The reasons for their success are unknown, but I discuss three possible explanations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnett, P. R. O., J. Watson & D. Connelly, 1984. A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments. Oceanol. Acta 7: 399–408.

    Google Scholar 

  • Billett, D. S. M., R. S. Lampitt, A. L. Rice & R. F. C. Mantoura, 1983. Seasonal sedimentation of phytodetritus to the deep-sea benthos. Nature 302: 520–522.

    Article  CAS  ISI  Google Scholar 

  • Dayton, P. K. & R. R. Hessler, 1972. Role of biological disturbance in maintaining diversity in the deep sea. Deep-Sea Res. 19: 199–208.

    Google Scholar 

  • Flach, E. & C. Heip, 1996. Vertical distribution of macrozoobenthos within the sediment on the continental slope of the Goban Spur area (NE Atlantic). Mar. Ecol. Prog. Ser. 141: 55–66.

    Google Scholar 

  • Fleeger, J. W., D. Thistle & H. Thiel, 1988. Sampling equipment. In Higgins, R. P. & H. Thiel (eds), Introduction to the Study of Meiofauna. Smithsonian Institution Press, Washington, DC: 115–125.

    Google Scholar 

  • Fowler, S. W. & G. A. Knauer, 1986. Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanogr. 16: 147–194.

    Article  Google Scholar 

  • Gage, J. D., 1977. Structure of the abyssal macrobenthic community in the Rockall Trough. In Keegan, B. F., P. O’Ceidigh & P. J. S. Boaden (eds), Biology of Benthic Organisms. Pergamon Press, New York: 247–260.

    Google Scholar 

  • Gage, J. D. & P. A. Tyler, 1991. Deep-Sea Biology. Cambridge University Press, Cambridge: 504 pp.

    Google Scholar 

  • Gooday, A. J., O. Pfannkuche & P. J. D. Lambshead, 1996. An apparent lack of response by metazoan meiofauna to phytodetritus deposition in the bathyal northeast Atlantic. J. mar. biol. Ass. U.K. 76: 297–310.

    Google Scholar 

  • Herman, R. L. & H. U. Dahms, 1992. Meiofauna communities along a depth transect off Halley Bay (Weddell Sea-Antarctica). Polar Biol. 12: 313–320.

    Article  Google Scholar 

  • Hessler, R. R. & P. A. Jumars, 1974. Abyssal community analysis from replicate box cores in the central North Pacific. Deep-Sea Res. 21: 185–209.

    Google Scholar 

  • Hicks, G. R. F. & B. C. Coull, 1983. The ecology of marine meiobenthic harpacticoid copepods. Oceanog. mar. Biol. ann. Rev. 21: 67–175.

    Google Scholar 

  • Hochachka, P. W. & G. N. Somero, 1984. Biochemical Adaptation. Princeton University Press, Princeton, NJ: 537 pp.

    Google Scholar 

  • Jumars, P. A., 1976. Deep-sea species diversity: does it have a characteristic scale? J. mar. Res. 34: 217–246.

    Google Scholar 

  • Jumars, P. A., 1993. Concepts in Biological Oceanography. Oxford University Press, Oxford: 348 pp.

    Google Scholar 

  • Khripounoff, A., D. Desbruyères & P. Chardy, 1980. Les peuplements benthiques de la faille Vema: données quantitatives et bilan d’energie en milieu abyssal. Oceanol. Acta 3: 187–198.

    Google Scholar 

  • Laubier, L. & M. Sibuet, 1979. Ecology of the benthic communities of the deep North East Atlantic. Ambio Special Report 6: 37–42.

    Google Scholar 

  • Myers, R. H., 1989. Classical and Modern Regression with Applications. Duxbury Press, Belmont, California: 488 pp.

    Google Scholar 

  • Pfannkuche, O., 1985. The deep-sea meiofauna of the Porcupine Seabight and abyssal plain (NE Atlantic): population structure, distribution, standing stocks. Oceanol. Acta 8: 343–353.

    Google Scholar 

  • Pfannkuche, O. & H. Thiel, 1988. Sample processing. In Higgins, R. P. & H. Thiel (eds), Introduction to the Study of Meiofauna. Smithsonian Institution Press, Washington, DC: 134–145.

    Google Scholar 

  • Rex, M. A. & R. J. Etter, 1998. Bathymetric patterns of body size: implications for deep-sea biodiversity. Deep-Sea Res. II 45: 103–127.

    Article  Google Scholar 

  • Richardson, M. D., K. B. Briggs & D. K. Young, 1985. Effects of biological activity by abyssal benthic macroinvertebrates on a sedimentary structure in the Venezuela Basin. Mar. Geol. 68: 243–267.

    Article  Google Scholar 

  • Rowe, G. T. & D. W. Menzel, 1971. Quantitative benthic samples from the deep Gulf of Mexico with some comments on the measurement of deep-sea biomass. Bull. mar. Sci. 21: 556–566.

    Google Scholar 

  • Rowe, G. T. & N. Staresinic, 1979. Sources of organic matter to the deep-sea benthos. Ambio Special Report 6: 19–23.

    Google Scholar 

  • Sanders, H. L., R. R. Hessler & G. R. Hampson, 1965. An introduction to the study of deep-sea benthic faunal assemblages along the Gay Head-Bermuda transect. Deep-Sea Res. 12: 845–867.

    Google Scholar 

  • SAS Institute Inc., 1989. SAS/STAT User’s Guide, Version 6, Fourth Edition, Volume 2, SAS Institute Inc., Cary, North Carolina: 846 pp.

    Google Scholar 

  • Schriever, G., C. Bussau & H. Thiel, 1991. DISCOL-precautionary environmental impact studies for future manganese nodule mining and first results on meiofauna abundance. Pro. Adv. mar. Tech. Conf. 4: 47–57.

    Google Scholar 

  • Shirayama, Y. & M. Horikoshi, 1989. Comparison of the benthic size structure between sublittoral, upper-slope and deep-sea areas of the western Pacific. Int. Rev. ges. Hydrobiol. 74: 1–13.

    Google Scholar 

  • Sibuet, M., C. Monniot, D. Desbruyères, A. Dinet, A. Khripounoff, G. Rowe & M. Segonzac, 1984. Peuplements benthiques et caractéristiques trophiques du milieu dans la plaine abyssale de Demerara. Oceanol. Acta 7: 345–358.

    Google Scholar 

  • Smith, C. R., 1985. Food for the deep sea: utilization, dispersal, and flux of nekton falls at the Santa Catalina Basin floor. Deep-Sea Res. 32: 417–442.

    Article  Google Scholar 

  • Smith, C. R., W. Berelson, D. J. DeMaster, F. C. Dobbs, D. Hammond, D. J. Hoover, R. H. Pope & M. Stephens, 1997. Latitudinal variations in benthic processes in the abyssal equatorial Pacific: control by biogenic particle flux. Deep-Sea Res. II 44: 2295–2317.

    Article  CAS  Google Scholar 

  • Smith, K. L., Jr. & K. R. Hinga, 1983. Sediment community respiration in the deep sea. In Rowe, G. T. (ed.), Deep-Sea Biology. Wiley, New York: 331–370.

    Google Scholar 

  • Snedecor, G. W. & W. G. Cochran, 1980. Statistical methods. The Iowa State University Press, Ames, Iowa: 507 pp.

    Google Scholar 

  • Thiel, H., 1979. Structural aspects of the deep-sea benthos. Ambio Special Report 6: 25–31.

    Google Scholar 

  • Thistle, D., 1978. Harpacticoid dispersion patterns: implications for deep-sea diversity maintenance. J. mar. Res. 36: 377–397.

    Google Scholar 

  • Thistle, D. & J. E. Eckman, 1990. The effect of biologically produced structure on the benthic copepods of a deep-sea site. Deep-Sea Res. 37: 541–554.

    Article  Google Scholar 

  • Tyler, P. A., 1995. Conditions for the existence of life at the deep-sea floor: an update. Oceanogr. mar. Biol. ann. Rev. 33: 221–244.

    Google Scholar 

  • Tyler, P. A. & C. M. Young, 1998. Temperature and pressure tolerances in dispersal stages of the genus Echinus (Echinodermata: Echinoidea): prerequisites for deep-sea invasion and speciation. Deep-Sea Res. II 45: 253–277.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Thistle, D. (2001). Harpacticoid copepods are successful in the soft-bottom deep sea. In: Lopes, R.M., Reid, J.W., Rocha, C.E.F. (eds) Copepoda: Developments in Ecology, Biology and Systematics. Developments in Hydrobiology, vol 156. Springer, Dordrecht. https://doi.org/10.1007/0-306-47537-5_20

Download citation

  • DOI: https://doi.org/10.1007/0-306-47537-5_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7048-2

  • Online ISBN: 978-0-306-47537-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics