Skip to main content

Structure and Productivity of Microtidal Mediterranean Coastal Marshes

  • Chapter
Concepts and Controversies in Tidal Marsh Ecology

Abstract

This paper reviews the literature on structure and production of Mediterranean microtidal marshes. Literature on structure and zonation is relatively abundant but there are relatively few studies of coastal wetland primary productivity in the Mediterranean. These tidal marshes are poorly flushed because of the low tidal range and freshwater tidal marshes are rare. Most marshes are found in deltas and fringing coastal lagoons. Recent studies carried out in the Ebre, Po and Rhone deltas show that net primary production (NPP) of marshes is strongly influenced by soil salinity and flooding. The productivity of these marshes is generally low, but there are significant exceptions. Minimum values of NPP of emergent vegetation (below-plus above-ground) were obtained in salt marshes dominated by Arthrocnemum macrostachyum 237 g m−2 y−1), characterized by low flooding frequency and high salt stress. Maximum values (up to 9685 g m−2 y−1) were obtained in fresh marshes dominated by Cladium mariscus, with high flooding frequency. In general terms, Mediterranean microtidal marsheshave low production due to salt stress and weak tidal flushing. This suggests that there is low export of marsh production to coastal lagoons, bays and open coastal waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Abdulrahman, F. S. and G. J. Williams. 1981. Temperature and salinity regulation of growth and gas exchange of Salicornia fruticosa (L.) L. Oecologia (Berlin) 48:346–352.

    Article  Google Scholar 

  • Adams, J. B. and G. C. Bate. 1994. The effect of salinity and inundation on the estuarine macrophyte Sarcocornia perennis. Aquatic Botany 47:341–348.

    Article  Google Scholar 

  • Ayala, F. and J. W. O’Leary. 1995. Growth and physiology of Salicornia bigelovii Torr. at suboptimal salinity. International Journal of Plant Sciences 156:197–205.

    Article  Google Scholar 

  • Berger, A., J. J. Corre and G. Heim. 1978. Structure, productivité et régime hydrique de phytocenoses halophiles sous climat méditerranéen. La Terre et la Vie 32:241–278.

    Google Scholar 

  • Berger, A., L. Bigot, A. Champeau, G. Heim and N. Poinsot-Balaguer. 1979. Production primaire et relations trophiques chez les invertebrés des communautés halophiles de Camargue. La Terre et la Vie 2:175–189.

    Google Scholar 

  • Bigot, L. 1963. Observations sur les variations de biomasses des principaux groupes d’invertebrés de la “sansouire” camarguaise. La Terre et la Vie 17:319–334.

    Google Scholar 

  • Callaway, R. M., S. Jones, W. R. Ferren and A. Parikh. 1990. Ecology of a mediterranean-climate estuarine wetland at Carpinteria, California: plant distributions and soil salinity in the upper marsh. Canadian Journal of Botany 68:1139–1146.

    Google Scholar 

  • Cameron, G. N. 1972. Analysis of insect trophic diversity in two salt marsh communities. Ecology 53:58–73.

    Google Scholar 

  • Chapman, V. J. 1977. Wet Coastal Ecosystems. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Clarke, P. J. and C. A. Jacoby. 1994. Biomass and above-ground productivity of salt-marsh plants in southeastern Australia. Australian Journal of Marine and Freshwater Research 45:1521–1528.

    Article  Google Scholar 

  • Comín, F., M. Menéndez and J. Lucena. 1989. Proposals for macrophyte restoration in eutrophic coastal lagoons. Hydrobiologia 200/201:427–436.

    Google Scholar 

  • Corre, J. J. 1979. Structure des communautés vegetales salées. La Terre et la Vie 2:105–127.

    Google Scholar 

  • Corre, J. J. 1985. Environmental structures and variation in coastal vegetation of the Golfe du Lion (France). Vegetatio 61:15–22.

    Article  Google Scholar 

  • Curcó, A., A. Canicio and C. Ibañez. 1997. Mapa d’hàbitats potencials del delta de 1’Ebre. Butlletí del Pare Natural del delta de 1’Ebre 9:4–12.

    Google Scholar 

  • Dame, R. F. and P. D. Kenny. 1986. Variability of Spartina altemiflora primary production in the eurihaline North Inlet estuary. Marine Ecology Progress Series 32:71–80.

    Google Scholar 

  • Day, J. W., Jr., C. Hall, W. Kemp and A. Yañez-Arancibia. 1989. Estuarine ecology. Wiley-Interscience, New York, New York, USA.

    Google Scholar 

  • Day, J. W., Jr., D. Pont, P. F. Hensel and C. Ibañez. 1995. Impacts of sea-level rise on deltas in the Gulf of Mexico and the Mediterranean: the importance of pulsing events to sustainability. Estuaries 18:636–647.

    CAS  Google Scholar 

  • Day, J. W., Jr., J. F. Martin, L. Cardoch and P. H. Templet. 1997. System functioning as a basis for sustainable management of deltaic ecosystems. Coastal Management 25:115–153.

    Article  Google Scholar 

  • De Leeuw, J., H. Olff and J. P. Bakker. 1990. Year-to-year variation in peak above-ground biomass of six salt-marsh angiosperm communities as related to rainfall deficit and inundation frequency. Aquatic Botany 36:139–151.

    Google Scholar 

  • Deegan, L. A., J. W. Day, Jr., J. G. Gosselink, A. Yáñez-Arancibia, G. Soberón and P. Sánchez-Gil. 1986. Relationships among physical characteristics, vegetation distribution and fisheries yield in Gulf of Mexico estuaries. Pages 83–100 in Estuarine Variability. Academic Press, New York, New York, USA.

    Google Scholar 

  • Eckardt, F. E. 1972. Dynamique de l’écosystème, stratégie des végétaux et échanges gazeux: cas des enganes à Salicornia fruticosa. Oecologia Plantarum 7:333–345.

    Google Scholar 

  • Eilers, H. P. 1981. Production in coastal salt marshes in southern California. U.S. EPA Technical Report EPA-60013-81-023. NTIS, Washington, District of Columbia, USA.

    Google Scholar 

  • Ferrari, C., R. Gerdol and F. Piccoli. 1985. The halophilous vegetation of the Po Delta (northern Italy). Vegetatio 61:5–14.

    Article  Google Scholar 

  • Figueroa, M. E. and A. J. Davy. 1991. Response of Mediterranean grassland species to changing rainfall. Journal of Ecology 79:925–941.

    Google Scholar 

  • García, L. V., T. Marañón, A. Moreno and L. Clemente. 1993. Above-ground biomass and species richness in a Mediterranean salt marsh. Journal of Vegetation Science 4:417–424.

    Google Scholar 

  • Géhu, J. M. 1984. Mediterranean salt marshes and salt steppes. Pages 166–167 in K.S. Dijkema, editor. Salt marshes in Europe. Council of Europe, Nature and Environment Series 30, Strasbourg, France.

    Google Scholar 

  • Géhu, J. M., A. Scoppola, G. Caniglia, S. Marchiori and J. Géhu-Franck. 1984. Les systèmes végétaux de la côte nord-adriatique italienne. Leur originalité à 1’échelle européenne. Colloques phytosociologiques 8:485–558.

    Google Scholar 

  • Giroux, J. F. and J. Bedard. 1987. Factors influencing above-ground production of Scirpus marshes in the St. Lawrence estuary, Quebec, Canada. Aquatic Botany 29:195–204.

    Article  Google Scholar 

  • Golterman, H.L. 1995. The labyinth of nutrient cycles and buffers in wetlands: results based on research in the Camargue (southern France). Hydrobiologia 315:39–58.

    CAS  Google Scholar 

  • Good, R., N. Good and B. Frasco. 1982. A review of primary production and decomposition dynamics of the belowground marsh component. Pages 139–157 in V.S. Kennedy, editor. Estuarine Comparisons. Academic Press, New York, New York, USA.

    Google Scholar 

  • Grouzis, M. 1973. Exigences écologiques comparées d’une salicorne vivace et d’une salicome annuelle: germination et croissance des stades jeunes. Oecologia Plantarum 8:367–375.

    Google Scholar 

  • Grouzis, M., G. Heim and A. Berger. 1977. Croissance et accumulation de sels chez deux salicornes annuelles du littoral méditerranéen. Oecologia Plantarum 12:307–322.

    Google Scholar 

  • Hensel, P. 1998. Sediment and accretionary dynamics in the Rhone Delta, France. Dissertation, Louisiana State University, Baton Rouge, Louisiana, USA.

    Google Scholar 

  • Hensel, P., J. W. Day, Jr., D. Pont and J. N. Day. 1998. Short terms sedimentation dynamics in the Rhone Delta, France: The importance of riverine pulsing. Estuaries 21:52–65.

    Google Scholar 

  • Heurteaux, P. 1970. Rapports des eaux souterraines avec les sols halomorphes et la végétation en Camargue. La Terre et la Vie 4:467–510.

    Google Scholar 

  • Hollis, T. 1992. The causes of wetland loss and degradation in the Mediterranean. Proceedings of IWRB International Symposium, Grade, Italy, 1991. International Waterfowl and Wetlands Research Bureau Special Publication 20:83–90.

    Google Scholar 

  • Hopkinson, C. S. and J. W. Day, Jr. 1977. A model of the Barataria Bay salt marsh ecosystem. Pages 235–265 in C.A. Hall and J. W. Day, Jr., editors. Modeling in theory and practice. John Wiley and Sons, New York, New York, USA.

    Google Scholar 

  • Hopkinson, C. S., J. G. Gosselink and R. T. Parrondo. 1978. Aboveground production of seven marsh plant species in coastal Louisiana. Ecology 59:760–769.

    Google Scholar 

  • Hopkinson, C. S., J. G. Gosselink and R. T. Parrondo. 1980. Production of coastal Louisiana marsh plants calculated from phenometric techniques. Ecology 61:1091–1098.

    Google Scholar 

  • Howes, B. L., R. W. Howarth, J. M. Teal and I. Valiela. 1981. Oxidation-reduction potentials in a salt marsh: spatial patterns and interactions with primary production. Limnology and Oceanography 26:350–360.

    Article  Google Scholar 

  • Ibañez, C., D. Pont and N. Prat. 1997. Characterization of the Ebre and Rhone estuaries: A basis for defining and classifying salt-wedge estuaries. Limnology and Oceanography 42:89–101.

    Google Scholar 

  • Ibañez, C., J. W. Day, Jr. and D. Pont. 1999. Primary production and decomposition in wetlands of the Rhone delta: possible implications of relative sea-level rise. Journal of Coastal Research 15:717–731.

    Google Scholar 

  • Jefferies, R. L. 1972. Aspects of salt-marsh ecology with particular reference to inorganic plant nutrition. Pages 61–85 in R. S. Barnes and J. Green, editors. The estuarine environment. Applied Science Publishers, London, England.

    Google Scholar 

  • Jimenez, J. A. 1996. Evolution costera en el Delta del Ebro. Un proceso a diferentes escalas de tiempo y espacio. Dissertation, University of Barcelona, Spain.

    Google Scholar 

  • Kwak, T. J. and J. B. Zedler. 1997. Food web analysis of southern California coastal wetlands using multiple stable isotopes. Oecologia 110:262–277.

    Article  Google Scholar 

  • Mahall, B. E. and R. B. Park. 1976. The ecotone between Spartina foliosa and Salicornia virginica in salt marshes of northern San Francisco Bay. I. Biomass and production. Journal of Ecology 64:421–433.

    Google Scholar 

  • Mall, R. E. 1969. Soil-water-salt relationships of waterfowl food plants in the Suisun Marsh of California. California Department of Fish and Game, Wildlife Bulletin No. 1.

    Google Scholar 

  • Martínez-Vilalta, A. 1995. The rice fields of the Ebro delta. Pages 173–186 in C. Morillo and J. L. González, editors. Management of Mediterranean wetlands. Publications MedWet/Ministerio de Medio Ambiente, Madrid, Spain.

    Google Scholar 

  • Menéndez, M. and F. A. Comín. 1990. Consumption of macrophytes by invertebrates in Tancada lagoon. Scientia Marina 54:139–144.

    Google Scholar 

  • Mitsch, W. J. and J. G. Gosselink. 1986. Wetlands. Van Nostrand Reinhold, New York, New York, USA.

    Google Scholar 

  • Molinier, R. and J. P. Devaux. 1978. Notice explicative de la carte phytosociologique de la Camargue. Revue de Biologie et Écologie méditerranéenne 4:159–196.

    Google Scholar 

  • Morris, J. M., B. Kjerfve and J. M. Dean. 1990. Dependence of estuarine productivity on anomalies in mean sea level. Limnology and Oceanography 35:926–930.

    Google Scholar 

  • Mudie, P. J. 1970. A survey of the coastal wetland vegetation of San Diego Bay. California Department of Fish and Game Control, Report W26.D25-51.

    Google Scholar 

  • Naidoo, G. and R. Rughunanan. 1990. Salt tolerance in the succulent, coastal halophyte, Sarcocornia natalensis. Journal of Experimental Botany 225:497–502.

    Google Scholar 

  • Nichabouri, A. and J. J. Corre. 1970. Comportement de 1’appareil radiculaire d’Arthrocnemum fruticosum (L.) Moq. et Arthrocnemum glaucum (Del.) Ung. Stern, en relation avec les conditions du milieu halomorphe littoral. Oecologia Plantarum 5:69–86.

    Google Scholar 

  • Nixon, S. W. 1980. Between coastal marshes and coastal waters: A review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. Pages 437–525 in P. Hamilton and K. B. McDonald, editors. Estuarine and wetland processes. Plenum Press, New York, New York, USA.

    Google Scholar 

  • Nixon, S. W. 1982. Nutrient dynamics, primary production and fisheries yields of lagoons. Oceanologica Acta, Special Volume: 357–371.

    Google Scholar 

  • Odum, W. E. 1988. Comparative ecology of tidal freshwater and salt marshes. Annual Reviews of Ecology and Systematics 19:147–76.

    Google Scholar 

  • Odum, W. E., J. S. Fisher and J. C. Pickral. 1979. Factors controlling the flux of particulate organic carbon from estuarine wetlands. Pages 69–80 in R. J. Livingston, editor, Ecological processes in coastal and marine systems. Plenum Press, New York, New York, USA.

    Google Scholar 

  • Onuf, C. P. 1987. The ecology of Mugu Lagoon, California: an estuarine profile. U.S. Fish and Wildlife Service Biological Report 85(7.15). Washington, District of Columbia, USA.

    Google Scholar 

  • Onuf, C. P., M. L. Quammen, G. P. Shaffer, C. H. Peterson, J. W. Chapman, J. Cermak and R. W. Holmes. 1978. An analysis of the values of central and southern California coastal wetlands. Pages 189–199 in Wetlands functions and values: the state of our understanding. American Water Resources Association, Minneapolis, USA.

    Google Scholar 

  • Page, H. M. 1995. Variation in the natural abundance of 15N in the halophyte Salicornia virginica, associated with groundwater subsidies of nitrogen in a southern California salt-marsh. Oecologia 104:181–188.

    Article  Google Scholar 

  • -1997. Importance of vascular plant and algal production to macro-invertebrate consumers in a southern California salt marsh. Estuarine, Coastal and Shelf Science 45:823–834.

    Article  Google Scholar 

  • Pattullo, J., W. Munk, R. Revelle and E. Strong. 1955. The seasonal oscillation in sea level. Journal of Marine Research 14:88–156.

    Google Scholar 

  • Pearce, F. and A. J. Crivelli. 1994. Characteristics of mediterranean wetlands. Publications MedWet/Tour de Valat, Aries, France.

    Google Scholar 

  • Pearcy, R. W. and S. L. Ustin. 1984. Effects of salinity on growth and photosynthesis of three California tidal marsh species. Oecologia 62:68–73.

    Article  Google Scholar 

  • Peinado, M., F. Alcaraz, J. L. Aguirre, J. Delgadillo and J. Alvarez. 1995. Similarity of zonation within Californian Baja Californian and Mediterranean salt marshes. Southwestern Naturalist 40:388–405.

    Google Scholar 

  • Pennings, S. C. and R. M. Callaway. 1992. Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology 73:681–690.

    Google Scholar 

  • Peterson, B. J. and R. W. Howarth. 1987. Sulfur, carbon and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia. Limnology and Oceanography 32:1195–1213.

    CAS  Google Scholar 

  • Rea, N. and G. G. Ganf. 1994. How emergent plants experience water regime in a Mediterranean-type wetland. Aquatic Botany 49:117–136.

    Article  Google Scholar 

  • Rey, J. R., J. Shaffer, R. Crossman and D. Tremain. 1990. Above-ground primary production in impounded, ditched and natural Batis-Salicornia marshes along the Indian River lagoon, Florida. Wetlands 10:151–171.

    Google Scholar 

  • Rozema, J. 1991. Growth, water and ion relationships of halophytic monocotyledonae and dicotyledonae: a unified concept. Aquatic Botany 39:17–33.

    Google Scholar 

  • Scarton, F., A. Rismondo and J.W. Day, Jr. 1998. Above-and below-ground production of Arthrocnemum fruticosum on a Venice Lagoon saltmarsh. Bollettino del Museo Civico di Storia Naturale di Venezia 48:237–245.

    Google Scholar 

  • Sestini, G. 1992. Implications of climatic changes for the Po Delta and Venice Lagoon. Pages 428–494 in L. Jeftic, J. D. Milliman and G. Sestini, editors. Climatic change and the mediterranean. UNEP.

    Google Scholar 

  • Shaltout, K. H., H. F. El Kady and Y. M. Alsodany. 1995. Vegetation analysis of the mediterranean region of the Nile Delta. Vegetatio 116:73–83.

    Google Scholar 

  • Skinner, J. and N. Zalewski. 1995. Functions and values of mediterranean wetlands. Publications MedWet/ Tour de Valat, Aries, France.

    Google Scholar 

  • Steever, E. Z., R. S. Warren and W. A. Wiering. 1976. Tidal energy subsidy and standing crop production of Spartina alterniflora. Estuarine, Coastal and Marine Sciences 4:473–478.

    Google Scholar 

  • Stevenson, J. C. 1988. Comparative ecology of submersed grass beds in freshwater, estuarine and marine environments. Limnology and Oceanography 33:867–893.

    Article  CAS  Google Scholar 

  • Sullivan, M. J. and C. A. Moncreiff. 1990. Edaphic algae are an important component of salt marsh food-webs: evidence from multiple stable isotope analyses. Marine Ecology Progress Series 62:149–159.

    Google Scholar 

  • Tamisier, A. 1990. The Camargue. Ecological habitats and landscapes. Evolution from 1942 to. 1984. A color map 1∶80 000. Association pour les Recherches en Camargue sur la Nature et l’Environment (ARCANE), Aries, France.

    Google Scholar 

  • Teal, J. M. 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43:614–624.

    Google Scholar 

  • Teal, J. M. and B. L. Howes. 1996. Interannual variability of a salt-marsh ecosystem. Limnology and Oceanography 41:802–809.

    Article  Google Scholar 

  • Tiku, B. L. 1976. Effect of salinity on the photosynthesis of the halophytes Salicornia rubra and Distichlis stricta. Physiology Plantorum 37:23–28.

    CAS  Google Scholar 

  • Turner, R. E. 1976. Geographic variations in salt marsh macrophyte production: a review. Contributions to Marine Sciences 20:47–68.

    Google Scholar 

  • Valiela, I. and J. M. Teal. 1979. The nitrogen budget of a salt marsh ecosystem. Nature 280:652–656.

    CAS  Google Scholar 

  • Wahby, S. D. and N. F. Bishara. 1981. The effect of the River Nile on Mediterranean Water before and after the construction of the High Dam at Aswan. Pages 311–318 in Proceedings of a Review Workshop on River Inputs to Ocean Systems. United Nations, New York, USA.

    Google Scholar 

  • Walter, H. 1973. Vegetationszonen und Klima. Verlag Eugen Ulmen, Stuttgart, Germany.

    Google Scholar 

  • Webb, K. L. 1966. Na Cl effect on growth and transpiration in Salicornia bigelovii, a salt marsh halophyte. Plant Soil 24:261–265.

    Article  CAS  Google Scholar 

  • Whigham, D. F., J. McCormick, R. E. Good and R. L. Simpson. 1978. Biomass and primary production in freshwater tidal wetlands of the Middle Atlantic Coast. Pages 3–20 in R.E. Good et al., editors. Freshwater wetlands: ecological processes and management potential. Academic Press, New York, New York, USA.

    Google Scholar 

  • Zedler, J. B. 1982. The ecology of southern California coastal salt marshes: a community profile. U.S. Fish and Wildlife Service, Washington, District of Columbia, USAFWS/OBS-81/54.

    Google Scholar 

  • -1983. Freshwater impacts in normally hypersaline marshes. Estuaries 6:346–355.

    Google Scholar 

  • Zedler, J. B., T. Winfield and P. Williams. 1980. Salt marsh productivity with natural and altered tidal circulation. Oecologia 44:236–240.

    Article  Google Scholar 

  • Zedler, J. B. and P. A. Beare. 1986. Temporal variability of salt marsh vegetation: the role of low-salinity gaps and environmental stress. Pages 295–306 in Estuarine Variability. Academic Press, New York, New York, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ibñez, C., Curco, A., Day, J.W., Prat, N. (2002). Structure and Productivity of Microtidal Mediterranean Coastal Marshes. In: Weinstein, M.P., Kreeger, D.A. (eds) Concepts and Controversies in Tidal Marsh Ecology. Springer, Dordrecht. https://doi.org/10.1007/0-306-47534-0_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-47534-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6019-3

  • Online ISBN: 978-0-306-47534-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics