Skip to main content

Eco-Physiological Controls on the Productivity of Spartina Alterniflora Loisel

  • Chapter
Concepts and Controversies in Tidal Marsh Ecology

Abstract

The intertidal salt marshes of the Atlantic and Gulf coasts of the United States are dominated by the perennial grass, Spartina alterniflora Loisel. The ecology of salt marshes in which this species dominates has been extensively investigated because of the documented biogeochemical functions that these ecosystems perform and the resulting societal values they provide. Since many of the salt marsh-derived values originate, either directly or indirectly, from the presence of a vegetated marsh and its primary productivity, it has long been a major goal of salt marsh ecology to elucidate the determinants of the growth of Spartina. This paper reviews the interaction of the abiotic environment with key eco-physiological processes controlling the growth of this important plant species. The productivity of Spartina can vary on both spatial and temporal scales. Spatial differences in productivity on a local scale are primarily determined by abiotic factors, particularly the interaction of soil anoxia, soluble sulfide, and salinity, with plant nitrogen uptake and assimilation. Also, Spartina can induce a positive feedback on productivity by enhancing substrate aeration. The growth enhancing effects of marsh infauna, e.g., fiddler crabs, are mediated through these interacting abiotic variables. Productivity differences on regional scales are largely dependent on geographical differences in climate, tidal amplitude, and soil parent material. Temporal variation results from seasonal and annual variation in climatic and tidal controls that may influence marsh salinity and/or inundation. The concerted research of a large number of scientists has provided one of the most comprehensive and ecologically-relevant analyses of determinants of the primary productivity of any nonagricultural plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Adams, D. A. 1963. Factors influencing vascular plant zonation in North Carolina salt marshes. Ecology 44:445–456.

    Google Scholar 

  • Allam, A. I. and J. P. Hollis. 1972. Sulfide inhibition of oxidases in rice roots. Phytopathology. 62.:634–639.

    Article  Google Scholar 

  • Anderson, C. and M. Treshow. 1980. A review of evironmental and genetic factors that affect height in Spartina alterniflora Loisel. Estuaries 3:168–176.

    Google Scholar 

  • Anderson, C. E. 1974. A review of structure in several North Carolina salt marsh plants. Pages 307–344 in R. J. Reimold and W. H. Queen, editors. Ecology of halophytes. New York Academic Press, Inc., New York, New York, USA.

    Google Scholar 

  • Ap Rees, T. 1974. Pathways of carbohydrate breakdown in higher plants. Pages 89–127 in D. H. Northcote, editors. Plant Biochemistry. D. H. Northcote. Baltimore University Park Press, Baltimore, Maryland, USA.

    Google Scholar 

  • Arenovski, A. L. and B. L. Howes. 1992. Lacunal allocation and gas transport capacity in the salt marsh grass Spartina alterniflora. Oecologia 90:316–322.

    Article  Google Scholar 

  • Armstrong, W. 1979. Aeration in higher plants. Advances in botanical research 7:225–332.

    CAS  Google Scholar 

  • Bertness, M. D. 1985. Fiddler crab regulation of Spartina alterniflora production on a New England salt marsh. Ecology 66:1042–1055.

    Google Scholar 

  • Bradley, P. M. and E. L. Dunn. 1989. Effects of sulfide on the growth of three salt marsh halophytes of the southeastern United States. American Journal of Botany 76:1707–1713.

    CAS  Google Scholar 

  • Bradley, P. M. and J. T. Morris. 1990. Influence of oxygen and sulfide concentration on nitrogen uptake kinetics in Spartina alterniflora. Ecology 71:282–287.

    CAS  Google Scholar 

  • Bradley, P. M. and J. T. Morris. 1991. The influence of salinity on the kinetics of NH4+ uptake in Spartina alterniflora. Oecologia 85:375–380.

    Article  Google Scholar 

  • Bradley, P. M. and J. T. Morris. 1992. Effect of salinity on the critical nitrogen concentration of Spartina alterniflora Loisel. Aquat. Bot. 43:149–161.

    Article  Google Scholar 

  • Brix, H. and B. K. Sorrell. 1996. Oxygen stress in wetland plants: comparison of de-oxygenated and reducing root environments. Functional Ecology 10:521–526.

    Google Scholar 

  • Broome, S. W., W. W. Woodhouse and E. D. Seneca. 1975. The relationship ofmineral nutrients to growth of Spartina alternaiflora in North Carolina: II. The effects of N, P, and Fe fertilizers. Soil Science Society of America Journal 39:301–307.

    CAS  Google Scholar 

  • Cantilli, J. F. 1989. Sulfide phytotoxicity in tidal salt marshes. Thesis, San Diego State University, San Diego, California, USA.

    Google Scholar 

  • Carlson, P. R. and J. Forrest. 1982. Uptake of dissolved sulfide by Spartina alterniflora: evidence from natural sulfur isotope abundance ratios. Science. 216:633–635.

    CAS  PubMed  Google Scholar 

  • Cavalieri, A. J. and A. H. C. Huang. 1981. Accumulation of proline and glycine betaine in Spartina alterniflora Loisel. in response to NaCl and Nitrogen in the marsh. Oecologia 49:224–228.

    Article  Google Scholar 

  • Chapman, V. J. 1978. The salt marsh environment. Pages 129149 in W. R. Waldrop, editor. Coastal Vegetation. Pergamon Press, Oxford, England.

    Google Scholar 

  • Craft, C. B., E. D. Seneca and S. W. Broome. 1991. Porewater chemistry of natural and created marsh soils. Journal of Experimental Marine Biology and Ecology 152:187–200.

    Article  CAS  Google Scholar 

  • Dacey, J. W. H. and B. L. Howes. 1984, Water uptake by roots controls water table movement and sediment oxidation in short Spartina marsh. Science 224:487–489.

    PubMed  CAS  Google Scholar 

  • Dawes, C. J. 1998. Marine Botany. New York, John Wiley and Sons, Inc., New York, New York, USA.

    Google Scholar 

  • DeLaune, R. D., S. R. Pezeshki and J. H. Pardue. 1990. An oxidation-reduction buffer for evaluating the physiological response of plants to root oxygen stress. Environmental and Experimental Botany 30:243–247.

    Article  CAS  Google Scholar 

  • DeLaune, R. D., C. J. Smith and W. H. Patrick, Jr. 1983. Relationship of marsh elevation, redox potential and sulfide to Spartina alterniflora productivity. Soil Science Society of America Journal 47:930–935.

    Article  CAS  Google Scholar 

  • Drake, B. G. and J. L. Gallagher. 1984. Osmotic potential and turgor maintenance in Spartina alterniflora Loisel. Oecologia 62:368–375.

    Article  Google Scholar 

  • Engler, R. M. and W. H. Patrick, Jr. 1975. Stability of sulfides of manganese, iron, zinc, copper, and mercury in flooded and nonflooded soil. Soil Science. 119:217–221.

    CAS  Google Scholar 

  • Epstein, E. 1972. Mineral Nutrition of Plants. New York, John Wiley and Sons, Inc., New York, New York, USA.

    Google Scholar 

  • Furtig, K., A. Ruegsegger, C. Brunold and R. Brandle. 1996. Sulphide utilization and injuries in hypoxic roots and rhizomes of common reed (Phragmites australis). Folia Geobotica Phytotaxonomica 31:143–151.

    Google Scholar 

  • Gallagher, J. L. 1975. Effect of an ammomium nitrate pulse on the growth and elemental composition of natural stands of Spartina alterniflora and Juncus roemerianus. American Journal of Botany 62:644–648.

    CAS  Google Scholar 

  • Gallagher, J. L., R. J. Reimold, R. A. Linthurst and W. J. Pfeiffer. 1980. Aerial production, mortality, and mineral accumulation-export dynamics in Spartina alterniflora and Juncus roemerianus plant stands in a Georgia salt marsh. Ecology 61:303–312.

    Google Scholar 

  • Gambrell, R. P., R. D. DeLaune and W. H. Patrick, Jr. 1991. Redox processes in soils following oxygen depletion. Pages 101–117 in Jackson, M. B., editor. Plant life under oxygen deprivation. M. B. Jackson. SPB Academic Publishing, Hauge, The Netherlands.

    Google Scholar 

  • Gambrell, R. P. and W. H. Patrick, Jr. 1978. Chemical and microbiological properties of anaerobic soils and sediments. Pages 375425 in D. D. Hook and R. M. M. Crawford, editors. Plant life in anaerobic Environments. Ann Arbor Science, Ann Arbor, Michigan, USA.

    Google Scholar 

  • Giblin, A. E., G. W. Luther, III, and I. Valiela. 1986. Trace metal solubility in salt marsh sediments contaminated with sewage sludge. Estuarine, Coastal and Shelf Science 23:477–498.

    CAS  Google Scholar 

  • Giurgevich, J. R. and E. L. Dunn. 1979. Seasonal patterms of CO2 and water vapor exchange of the tall and short height forms of Spartina alterniflora Loisel in a Georgia salt marsh. Oecologia 43:139–156.

    Article  Google Scholar 

  • Goodman, P. J. and W. T. Williams. 1961. Investigations into ”die-back” in spartina townsendii agg. III. physiological correlates of “die-back“. Journal of Ecology 49:391–398.

    Google Scholar 

  • Gosselink, J. G., E. P. Odum and R. M. Pope. 1973. The value of the tidal marsh. URDC University of Florida. Gainesville, Florida, USA.

    Google Scholar 

  • Haines, B. L. and E. L. Dunn. 1976. Growth and resource allocation responses of Spartina alternaiflora Loisel to three levels of NH4-N, Fe, and NaCl in solution culture. Botanical Gazettte 137:224–230.

    CAS  Google Scholar 

  • Havill, D. C., A. Ingold and J. Pearson. 1985. Sulfide tolerence in coastal halophytes. Vegetatio 62:279–285.

    Article  Google Scholar 

  • Hester, M. W., I. A. Mendelssohn and K. L. McKee. 1998. Intraspecific variation in salt tolerance and morphology in Panicum hemitomon and Spartina alterniflora (Poaceae). International Journal of Plant Science 159:127–138.

    Article  Google Scholar 

  • Howarth, R. W., A. Giblin, J. Gale, B. J. Peterson and G. W. Luther, III. 1983. Reduced sulfur compounds in the pore waters of a New England salt marsh. Ecological Bulletin 35:135–152.

    CAS  Google Scholar 

  • Howes, B. L., J. W. H. Dacey and D. D. Goehringer. 1986. Factors controlling the growth form of Spartina alterniflora: feedbacks between above-ground production, sediment oxidation, nitrogen and salinity. Journal of Ecology 74:881–898.

    Google Scholar 

  • Howes, B. L., R. W. Howarth, T. J. M. and I. Valiela. 1981. Oxidation-reduction potentials in a salt marsh: Spatial patterns and interactions with primary production. Limnology and Oceanography 26:350–360.

    Article  Google Scholar 

  • Howes, B. L. and J. M. Teal. 1994. Oxygen loss from Spartina alterniflora and its relationship to salt marsh oxygen balance. Oecologia 97:431–438.

    Article  Google Scholar 

  • Hwang, Y.H. and J. T. Morris. 1991. Evidence for hygrometric pressurization in the internal gas space of Spartina alterniflora. Plant Physiology 96:166–171.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, Y.-H. and J. T. Morris. 1994. Whole-plant gas exchange responses of Spartina alterniflora (Poaceae) to a range of constant and transient salinities. American journal of botany 81:659–665.

    CAS  Google Scholar 

  • -1992. Fixation of inorganic carbon from different sources and its translocation in Spartina alterniflora Loisel. Aquatic Botany 43:137–147.

    Article  Google Scholar 

  • Ingold, A. and D. C. Havill. 1984. The influence of sulphide on the distribution of higher plants in salt marshes. Journal of Ecology 72:1043–1054.

    CAS  Google Scholar 

  • Joshi, M. M., I. K. A. Ibrahim and J. P. Hollis. 1975. Hydrogen sulfide: effects on the physiology of rice plants and relation to straighthead disease. Phytopathology. 65:1165–1170.

    Article  CAS  Google Scholar 

  • Kaswadji, R. F., J. G. Gosselink and R. E. Turner. 1990. Estimation of pirmary production using five different methods in a Spartina alterniflora salt marsh. Wetlands Ecology and Management 1:57–64.

    Article  Google Scholar 

  • King, G. M., M. J. Klug, R. G. Wiegert and A. G. Chalmers. 1982. Relation of soil water movement and sulfide concentration to Spartina alterniflora production in a Georgia salt marsh. Science 218:61–63.

    CAS  PubMed  Google Scholar 

  • Kirby, C. J. and J. Gosselink. 1976. Primary production in a Louisiana Gulf Coast Spartina alterniflora marsh. Ecology 57:1052–1059.

    Google Scholar 

  • Koch, M. S. and I. A. Mendelssohn. 1989. Sulphide as a soil phytotoxin: differential responses in two marshspecies. Journal of Ecology 77:565–578.

    CAS  Google Scholar 

  • Koch, M. S., I. A. Mendelssohn and K. L. McKee. 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnology and Oceanography 35:399–408.

    CAS  Google Scholar 

  • Krone, R. B. 1985. Simulation of marsh growth under rising sea levels. Pages in W. R. Waldrop, editor. Hydraulics and hydrology in the small computer age. W. R. Waldrop Hydraulics Div. ASCE.

    Google Scholar 

  • Lee, R.W., D.W. Kraus, and J.E. Doeller. 1999. Oxidation of sulfide by Spartina alterniflora roots. Limnology and Oceanography 44:1155–1159.

    CAS  Google Scholar 

  • Leeper, G. W. 1952. Factors affecting availibility of inorganic nutrients in soils with special reference to micro-nutrient metals. Annual review of Plant Physiology. 3:1–16.

    Article  Google Scholar 

  • Levering, C. A. and W. W. Thomson. 1971. The ultrastructure of the salt gland of Spartina foliosa. Planta 97:183–196.

    Article  Google Scholar 

  • Linthurst, R. A. 1979. The effect of aeration on the growth of Spartina alterniflora Loisel. American Journal of Botany 66:685–691.

    CAS  Google Scholar 

  • Linthurst, R. A. 1980. An evaluation of aeration, nitrogen, pH and salinity as factors affecting Spartina alterniflora growth: a summary. Pages 235247 in V. S. Kennedy, editor. Estuarine perspectives. Academic Press, New York, New York, USA.

    Google Scholar 

  • Linthurst, R. A. and R. J. Reimold. 1978. An evaluation of methods for estimating the net aerial primary productivity of estuarine angiosperms. Journal of Applied Ecology 15:919–931.

    Google Scholar 

  • Luther, G. W., III, T. M. Church, J. R. Scudlark and M. Cosman. 1986. Inorganic and organic sulphur cycling in salt-marsh pore waters. Science. 232:746–749.

    CAS  PubMed  Google Scholar 

  • Masaoka, Y., M. Kojima, S. Sugihara, T. Yoshihara, M. Koshino and A. Ichihara. 1993. Dissolution of ferric phosphate by alfalfa (Medicago sative L.) root exudates. Plant and Soil Science 155/156:75–78.

    Google Scholar 

  • Mayne, R. G. and H. Kende. 1986. Glucose metabolism in anaerobic rice seedling. Plant Science 45:31–36.

    Article  CAS  Google Scholar 

  • McKee, K. L., I. A. Mendelssohn and M. W. Hester. 1988. Reexamination of pore water sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia germinans. American Journal of Botany 75:1352–1359.

    Google Scholar 

  • Mendelssohn, I. A. 1979a. The influence of nitrogen level, form, and application method on the growth response of Spartina alterniflora in North Carolina. Estuaries 2:106–112.

    Google Scholar 

  • -1979b. Nitrogen metabolism in the height forms of Spartina alterniflora in North Carolina. Ecology 60:574–584.

    CAS  Google Scholar 

  • Mendelssohn, I. A. and K. L. McKee. 1983. Root metabolic response of Spartina alterniflora to hypoxia. Pages 239253 in Crawford, R. M. M., editor. Plant life in aquatic and amphibious habitats. British Ecological Society, Special Publication No. 5.

    Google Scholar 

  • -1988. Spartina alterniflora die-back in Louisiana: time course investigation of soil water-logging effects. Journal of Ecology 6:509–521.

    Google Scholar 

  • Mendelssohn, I. A. and K. L. McKee. 1992. Indicators of environmental stress in wetland plants. Pages 603624 in D. H. McKenzie, D. E. Hyatt and V. J. McDonald, editors. Ecological indicators. Elsevier Applied Science, New York, New York, USA.

    Google Scholar 

  • Mendelssohn, I. A., K. L. McKee and W. H. Patrick, Jr. 1981. Oxygen deficiency in Spartina alterniflora roots: metabolic adaptation to anoxia. Science 214:439–441.

    CAS  PubMed  Google Scholar 

  • Mendelssohn, I. A., K. L. McKee and M. T. Postek, editors. 1982. Sublethal steresses controlling Spartina alterniflora productivity. Wetlands: ecology and management. International Scientific Publications, Jaipur, India.

    Google Scholar 

  • Mendelssohn, I. A. and M. T. Postek. 1982. Elemental analysis of deposits on the roots of Spartina alterniflora. Loisel. American Journal of Botany 69:904–912.

    Google Scholar 

  • Mendelssohn, I. A. and E. D. Seneca. 1980. The influence of soil drainage on the growth of salt marsh cordgrass Spartina alterniflora in North Carolina. Estuarine, Coastal and Marine Science 2:27–40.

    Google Scholar 

  • Mitsch, W. J. and J. G. Gosselink. 1993. Wetlands. Van Nostrand Reinhold, New York, New York, USA.

    Google Scholar 

  • Morris, J. T. 1984. Effects of oxygen and salinity on ammonium uptake by Spartina alterniflora Loisel and Spartina patens (Aiton) Muhl. Journal of Experimental Marine Biology and Ecology 78:87–98.

    CAS  Google Scholar 

  • -1988. Pathways and controls of the carbon cycle in salt marshes. Pages 497–510 in W. H. M. D. D. Hook, Jr., H. K. Smith, J. Gregory, V. G. J. Burrell, M. R. Voe, R. E. Sojka, S. Gilbert, R. Banks, L. H., and C. B. Stolzy, T. D. Matthews, and T. H. Shear, editors. The Ecology and management of wetlands, Volume 1: Ecology of wetlands. Croom Helm Ltd., Breckenham, England.

    Google Scholar 

  • -1995. The mass balance of salt and water in intertidal sediments: results from North Inlet, South Carolina. Estuaries 18:556–567.

    CAS  Google Scholar 

  • Morris, J. T. and J. W. H. Dacey. 1984. Effects of O2 on ammonium uptake and root respiration by Spartina alterniflora. American Journal of Botany 71:979–985.

    CAS  Google Scholar 

  • Morris, J. T., C. Haley and R. Krest. 1996. Effects of sulfide concentrations on growth and dimethylsulphoniopropionate (DMSP) concentration in Spartina alterniflora. Pages 87–95 in R. Kiene, P. Visscher, M. Keller and G. Kirst, editors. Biological and environmental chemistry of DMSP and related sulfonium compounds. Plenum, Press New York, New York, USA.

    Google Scholar 

  • Morris, J. T. and B. Haskin. 1990. A 5-yr record of aerial primary production and stand characteristics of Spartina alterniflora. Ecology 7:2209–2217.

    Google Scholar 

  • Morris, J. T., B. Kjerfve and J. M. Dean. 1990. Dependence of estuarine productivity on anomalies in mean sea level. Limnology and Oceanography 35:926–930.

    Article  Google Scholar 

  • Naidoo, G., K. L. McKee and I. A. Mendelssohn. 1992. Anatomical and metabolic responses to waterlogging and salinity in Spartina alterniflora and S. patens (Poaceae). American Journal of Botany 79:765–770.

    CAS  Google Scholar 

  • Odum, E. P. 1961. The role of tidal marshes in estuarine production. The New York State Conservationist 29:60–64.

    Google Scholar 

  • Okajima, H. and S. Takagi. 1953. Physiological behavior of hydrogen sulfide in the rice plant. Part I: Effect of hydrogen sulfide on the absorption of nutrients. Science Reports of the Research Institutes, Tohoku University 5:21–31.

    CAS  Google Scholar 

  • Osgood, D. T. and J. C. Zieman. 1993. Spatial and temporal patterns of substrate physicochemical parameters in different-aged barrier island marshes. Estuarine, Coastal and Shelf Science 37:421–436.

    Article  CAS  Google Scholar 

  • Parrondo, R. T., J. G. Gosselink and C. S. Hopkins. 1978. Effects of salinity and drainage on the growth of three salt marsh grasses. Botanical Gazette 139:102–107.

    Article  CAS  Google Scholar 

  • Patrick, W. H., Jr. and R. D. DeLaune. 1976. Nitrogen and phosphorus utilization by Spartina alterniflora in a salt marsh in Barataria Bay, Louisiana. Estuarine, Coastal and Marine Science 4:59–64.

    CAS  Google Scholar 

  • Pattullo, J., W. Munk, R. Revelle and E. Strong. 1955. The seasonal oscillation in sea level. Journal of Marine Research 14:88–156.

    Google Scholar 

  • Pearson, J. and D. C. Havill. 1988. The effect of hypoxia and sulphide on culture-grown wetland and non-wetland plants. Journal of Experimental Botany 39:363–374.

    CAS  Google Scholar 

  • Phleger, C. F. 1971. Effect of salinity on growth of a salt marsh grass. Ecology 52:908–911.

    CAS  Google Scholar 

  • Ponnamperuma, F. N. 1972. The chemistry of submerged soils. Advances in Agronomy 24:29–96.

    Article  CAS  Google Scholar 

  • -1977a. Behavior of minor elements in paddy soils. The International Rice Research Institute. Manila, Philippines. IRRI Research Paper Series No. 8.

    Google Scholar 

  • -1977b. Physicochemical properties of submerged soils in relation to fertility. The International Rice Research Institute. Manila, Philippines. IRRI Research Paper Series 5.

    Google Scholar 

  • Shew, D. M., R. A. Linthurst, and E. D. Seneca. 1981. Comparison of production computation methods in a southeastern North Carolina Spartina alterniflora salt marsh. Estuaries 4:97–109.

    Google Scholar 

  • Smalley, A. E. 1960. Energy flow of a salt marsh grasshopper population. Ecology. 41:785–790.

    Google Scholar 

  • Smart, R. M. 1982. Distribution and environmental control of productivity and growth form noital of Spartina alterniflora (Loisel). Tasks for Vegetation Science 2:127–142.

    Google Scholar 

  • Steever, E. Z., R. S. Warren and W. A. Niering. 1976. Tidal energy subsidy and standing crop production of Spartina alterniflora. Estuarine, Coastal and Marine Science 4:473–478.

    Article  Google Scholar 

  • Sullivan, M. J. and F. C. Daiber. 1974. Response in production of cord grass, Spartina alterniflora, to inorganic nitrogen and phosphorus fertilizer. Chesapeake Science 15:121–123.

    Google Scholar 

  • Teal, J. M. and J. W. Kanwisher. 1966. Gas transport in the marsh grass, Spartina alterniflora. Journal of Experimental Botany 12:355–361.

    Google Scholar 

  • Turner, F. T. and W. H. Patrick, Jr. 1968. Chemical changes in waterlogged soils as a result of oxygen depletion. Transactions of the 9th International Congress of Soil Science, International Society of Soil Science and Angus and Robertson, Ltd., 4:53–56, Sidney, Australia.

    CAS  Google Scholar 

  • Turner, J. S. 1960. Fermentation in higher plants; its relation to respiration; the Pasteur effect. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Turner, R. E. 1976. Geographic variations in salt marsh macrophyte production: a review. Contributions in Marine Science 20:47–68.

    Google Scholar 

  • Turner, R. E. 1977. Intertidal vegetation and commercial yields of penaeid shrimp. Transactions of the American Fisheries Society 106:411–416.

    Article  Google Scholar 

  • Valiela, I. 1995. Marine Ecological Processes. Springer-Verlag, New York, New York, USA.

    Google Scholar 

  • Valiela, I. and J. M. Teal. 1974. Nutrient limitation in salt marsh vegetation. Pages 547563 in R. J. Reimold and W. H. Queen, editor. Ecology of halophytes. New York Academic Press, New York, New York, USA.

    Google Scholar 

  • Valiela, I. and J. M. Teal. 1979. The nitrogen budget of a salt marsh ecosystem. Nature 280:652–656.

    CAS  Google Scholar 

  • Van Diggelen, J., J. Rozema and R. Broukman. 1987. Pages 260–268 in A. H. L. Huiskes, C. W. P. M. Blom and J. Rozema, editors. Vegetation between land and sea. W. Junk Publishers, Hauge, The Netherlands.

    Google Scholar 

  • Van Diggelen, J., J. Rozema, D. M.J. Dickson and R. Broekman. 1986. Beta-3-dimethylsulphoniopropionate, proline and quaternary ammonium compounds in Spartina anglica in relation to sodium chloride, nitrogen and sulphur. New Phytologist 103:573–586.

    Google Scholar 

  • Vartapetyan, B. B. 1982. Anaerobiosis and the theory of physiological adaptation of plants to flooding. Soviet Plant Physiology 29:764–771.

    Google Scholar 

  • Webb, J. W. 1983. Soil water salinity variations and their effects on Spartina alterniflora. Contributions in Marine Science 26:1–13.

    Google Scholar 

  • Wiegert, R. G., A. G. Chalmers, and P. F. Randerson. 1983. Productivity gradients in salt marshes: the response of Spartina alterniflora to experimentally manipulated soil water movement. Oikos 41:1–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mendelssohn, I.A., Morris, J.T. (2002). Eco-Physiological Controls on the Productivity of Spartina Alterniflora Loisel. In: Weinstein, M.P., Kreeger, D.A. (eds) Concepts and Controversies in Tidal Marsh Ecology. Springer, Dordrecht. https://doi.org/10.1007/0-306-47534-0_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47534-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6019-3

  • Online ISBN: 978-0-306-47534-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics