Skip to main content

References is a Moving Target in Sea-Level Controlled Wetlands

  • Chapter
Concepts and Controversies in Tidal Marsh Ecology

Abstract

Central to the restoration of wetlands is the concept of reference. Wetlands are grouped within a reference domain of the same hydrogeomorphic subclass and compared to reference standards of the least impacted members of the subclass. Restoration decisions can be based within this context. Sea-level controlled wetlands, including salt marshes, provide a challenge to establishing reference standards because they progressively change in response to rising sea-level and associated stressors. The natural progression of change is distinct from that induced by human activities. We review geomorphic classifications for sea-level controlled wetlands to identify a spatial scale appropriate for restoration. This scale encompasses an ecosystem state change model which accounts for the natural progression. We emphasize the importance of more proximal causes of change than sea-level rise itself (e.g., access to fresh and sea water, sediment, and space for transgression). Through examples from several marshes, we highlight the consequences of movement, note distinctions between low and high marshes, and describe the transition between them. These distinctions are made for hydrology in an intertidal and nontidal portion of a marsh and for nitrogen cycling in a northern and a southern marsh on the Atlantic coast of the USA. Further, we describe the nature of one change in state as the turf of a high marsh becomes unstable, producing a hollow and hummock pattern that is expected to transform into low marsh. Recognition of the consequences of movement to more explicit, hydrogeomorphology-based reference systems helps place restoration in a perspective which will improve both project design and probability of success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Bacon, P. R. 1994. Template for evaluation of impacts of sea level rise on Caribbean coastal wetlands. Ecological Engineering 5: 171–186.

    Google Scholar 

  • Brinson, M. M., P. B,. Hook and W. L. Bryant, Jr. 1991. Hydrologic environment of Cedar Island marsh. Pages 47–99 in M. M. Brinson, editor. Ecology of a nontidal brackish marsh in coastal North Carolina. U. S. Fish and Wildlife Service, National Wetlands Research Center, Open File Report 91-03.

    Google Scholar 

  • Brinson, M. M., W. Kruczynski, L. C. Lee, W. L. Nutter, R. D. Smith, and. D. F. Whigham. 1994. Developing an approach for assessing the functions of wetlands. Pages 615–624 in W.J. Mitsch, editor. Global wetlands: old world and new. Elsevier Science B. V., Amsterdam, The Netherlands.

    Google Scholar 

  • Brinson, M. M., F. R. Hauer, L. C. Lee, W. D. Nutter, R. D. Rheinhardt, R D. Smith and D. F. Whigham. 1995a. Guidebook for application of hydrogeomorphic assessments to riverine wetlands. Technical Report WRP-DE-11, an Operational Draft. U.S. Army Engineers Waterways Experiment Station, Vicksburg, M. S.

    Google Scholar 

  • Brinson, M. M. and R. D. Rheinhardt. 1996. The role of reference wetlands in functional assessment and mitigation. Ecological Applications 6: 69–76.

    Google Scholar 

  • Brinson, M. M., and. R. R. Christian. 1999. Stability of Juncus roemerianus patches in a salt marsh. Wetlands 19: 65–70.

    Article  Google Scholar 

  • Burdick, D.M., M. Dionne, R.M. Boumans and F.T Short. 1997. Ecological responses to tidal restorations of two northern New England marshes. Wetlands Ecology and Management 4: 129–144.

    Article  Google Scholar 

  • Cahoon, D. R., D. J. Reed and J. W. Day, Jr. 1995a. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology 128: 1–9.

    Article  Google Scholar 

  • Cahoon, D. R., D. J. Reed, J. W. Day, Jr., G. D. Steyer, R. M. Boumans, J. C. Lynch, D. McNally and N. Latif. 1995b. The influence of hurricane Andrew on sediment distribution in Louisiana coastal marshes. Journal of Coastal Research 21: 280–294.

    Google Scholar 

  • Christian, R. R. 1981. Community metabolism of a salt-marsh pothole. Bulletin of the New Jersey Academy of Science 26: 34–40.

    Google Scholar 

  • Christiansen, T. 1998. Sediment deposition on a tidal salt marsh. Dissertation. University of Virginia, Charlottesville, Virginia, USA.

    Google Scholar 

  • Cintron, G., A. E. Lugo and R. Martinez. 1985. Structural and functional properties of mangrove forests. Pages 53–66 in The botany and natural history of Panama. Missouri Botanical Garden, Saint Louis, Missouri, USA

    Google Scholar 

  • Cowardin, L.M., V. Carter, F.C. Golet and E.T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. FWS/OBS-79/31, USDI Fish and Wildlife Service, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Dame, R., D. Childers and E. Koepfler. 1992. A geohydrologic continuum theory for the spatial and temporal evolution of marsh-estuarine ecosystems. Netherlands Journal of Sea Research 30: 63–72.

    Article  Google Scholar 

  • DeLaune, R. D., J. A. Nyman and W. H. Patrick, Jr. 1994. Peat collapse, ponding and wetland loss in a rapidly submerging coastal marsh. Journal of Coastal Research 10: 1021–1030.

    Google Scholar 

  • Eleuterius, L. N. and C. K. Eleuterius. 1979. Tide levels and salt marsh zonation. Bulletin of Marine Science 29: 394–400.

    Google Scholar 

  • Finn, J.T. 1980. Flow analysis of models of the Hubbard Brook ecosystem. Ecology 61: 562–571.

    Google Scholar 

  • Gardner, L. R., B. R. Smith and W. K. Michener. 1992. Soil evolution along a forest-salt marsh transect under a regime of slowly rising sea level, southeastern United States. Geoderma 55: 141–157.

    Article  Google Scholar 

  • Giese, G. L., H. B. Wilder and G. G. Parker, Jr. 1985. Hydrology of major estuaries and sounds of North Carolina. U. S. Geological Survey, Water Supply Paper 2221.

    Google Scholar 

  • Hackney, C. T. and W. J. Cleary. 1987. Saltmarsh loss in southeastern North Carolina lagoons: importance of sea level rise and inlet dredging. Journal of Coastal Research 3: 93–97.

    Google Scholar 

  • Hayden, B. P., C. F. V. Santos, G. Shao and R. C. Kochel. 1995. Geomorphological controls on coastal vegetation at the Virginia Coast Reserve. Geomorphology 13: 283–300.

    Article  Google Scholar 

  • Hmieleski, J.I. 1994. High marsh-forest transitions in a brackish marsh: the effect of slope. Thesis. East Carolina University, Greenville, North Carolina, USA.

    Google Scholar 

  • Kneib, R. T. 1997. The role of tidal marshes in the ecology of estuarine nekton. Oceanography and Marine Biology: An Annual Review 35: 163–220.

    Google Scholar 

  • Knowles, D. B. 1991. Vegetative analysis of Cedar Island marsh. Pages 125–146 in M. M. Brinson, editor. Ecology of a nontidal brackish marsh in coastal North Carolina. U. S. Fish and Wildlife Service, National Wetlands Research Center Open File Report 91-03.

    Google Scholar 

  • Knowles, D. B., W. L. Bryant, Jr. and E. C. Pendleton. 1991. Wrack as an agent of disturbance in an irregularly flooded brackish marsh. Pages 147–186 in M. M. Brinson, editor. Ecology of a nontidal brackish marsh in coastal North Carolina. U. S. Fish and Wildlife Service, National Wetlands Research Center Open File Report 91-03.

    Google Scholar 

  • Lugo, A. E. and S. C. Snedaker. 1974. The ecology of mangroves. Annual Review of Ecology and Systematics 5: 39–64.

    Article  Google Scholar 

  • Nyman, J. A., R. D. DeLaûne, H. H. Roberts and W. H. Patrick, Jr. 1993. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Marine Ecology Progress Series 96: 269–279.

    Google Scholar 

  • Odum, E. P. 1969. The strategy of ecosystem development. Science 164: 262–270.

    PubMed  CAS  Google Scholar 

  • Odum, H. T., B. J. Copeland and E.A. McMahan. 1974. Coastal ecological systems of the United States. The Conservation Foundation, Washington, District of Columbia, USA.

    Google Scholar 

  • Odum, W. E., T. J. Smith III, J. K. Hoover and C.C. Mclvor. 1984. The ecology of tidal freshwater marshes of the United States East coast: community profile. U. S. Fish and Wildlife Service, FWS/OBS-83/17.

    Google Scholar 

  • Oertel, G. F., J. C. Kraft, M. S. Kearney and H. J. Woo. 1992. A rational theory for barrier-lagoon development. Pages 77–87 in Quaternary coasts of the United States: marine and lacustrine systems. Society for Sedimentary Geology, SEPM Special Publication No. 48.

    Google Scholar 

  • Oertel, G. F. and H. J. Woo. 1994. Landscape classification and terminology for marsh in deficit coastal lagoons. Journal of Coastal Research 10: 919–932.

    Google Scholar 

  • Osgood, D. T., M. C. V. F. Santos and J. C. Zieman. 1995. Sediment physio-chemistry associated with natural marsh development on a storm-deposited sand flat. Marine Ecology Progress Series 120: 271–283.

    CAS  Google Scholar 

  • Patten, B. C. 1978. Systems approach to the concept of environment. Ohio Journal of Science 78: 206–222.

    Google Scholar 

  • Redfield, A. C. 1972. Development of a New England salt marsh. Ecological. Monographs 42: 201–237.

    Google Scholar 

  • Reed, D. J. and D. R. Cahoon. 1992. The relationship between marsh surface topography, hydrology and growth of Spartina alterniflora in a deteriorating Louisiana salt marsh. Journal of Coastal Research 8: 77–87.

    Google Scholar 

  • Reidenbaugh, T. G., W. C. Banta, M. Varricchio, R. P. Strieter and S. Mendoza. 1983. Short-term accretional and erosional patterns in a Virginia salt marsh. Gulf Research Reports 7: 211–215.

    Google Scholar 

  • Stasavich, L. E. 1998. Hydrodynamics of a coastal wetland ecosystem. Thesis. East Carolina University, Greenville, North Carolina, USA.

    Google Scholar 

  • Stevenson, J. C., M. S. Kearney and E. C. Pendleton. 1985. Sedimentation and erosion in a Chesapeake Bay brackish marsh system. Marine Geology 67: 213–235.

    Article  Google Scholar 

  • Stumpf, R. P. 1983. The process of sedimentation on the surface of a salt marsh. Estuarine, Coastal and Shelf Science 17: 495–508.

    Google Scholar 

  • Tamowski, R. L. 1997. Effects of dissolved oxygen concentrations on nitrification in coastal waters. Thesis. East Carolina University, Greenville, North Carolina, USA.

    Google Scholar 

  • Teal, J.M. 1986. The ecology of regularly flooded salt marshes of New England: a community profile. U.S. Fish Wildlife Service, Biological Report 85(7.4).

    Google Scholar 

  • Thom, B. G. 1982. Mangrove ecology: a geomorphical perspective. Pages 3–17 in B. F. Clough, editor. Mangrove ecosystems in Australia. Australian National University Press, Canberra, Australia.

    Google Scholar 

  • Thomas, C. R. 1998. The use of network analysis to compare nitrogen cycles of three salt marsh zones experiencing relative sea-level rise. Thesis. East Carolina University, Greenville, North Carolina, USA.

    Google Scholar 

  • Turner, R. E. 1997. Wetland loss in the northern Gulf of Mexico: a multiple working hypotheses. Estuaries 20: 1–13.

    Google Scholar 

  • Twilley, R. R. 1995. Properties of mangrove ecosystems related to the energy signature of coastal environments. Pages 43–62 in C.A.S. Hall, editor. Maximum power: the ideas and applications of H.T. Odum. University Press of Colorado, Niwot, Colorado, USA.

    Google Scholar 

  • Ulanowicz, R.E. 1987. NETWRK4: a package of computer algorithms to analyze ecological flow networks. University of Maryland, Chesapeake Bay Laboratory, Solomons, Maryland, USA.

    Google Scholar 

  • Valiela, I. and J. M. Teal. 1979. Inputs, outputs and interconversions of nitrogen in a salt marsh ecosystem. Pages 399–414 in R. L. Jefferies and A. J. Davy, editors. Ecological processes in coastal environments. Blackwell Scientific Publications, London, England.

    Google Scholar 

  • Vannote R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell and C. E Cushing. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Warren, R. S. and W. A. Niering. 1993. Vegetation change on a Northeast tidal marsh: interaction of sealevel rise and marsh accretion. Ecology 74: 96–103.

    Google Scholar 

  • White, W. A. and T. A. Tremblay. 1995. Submergence of wetlands as a result of human-induced subsidence and faulting along the upper Texas Gulf coast. Journal of Coastal Research 11: 788–807.

    Google Scholar 

  • Weinstein, M. P., J.H. Balletto, J. M. Teal and D. F. Ludwig. 1997. Success criteria and adaptive management for a large-scale wetland restoration project. Wetlands Ecology and Management 4: 111–127.

    Article  Google Scholar 

  • Wulff, F., J. G. Field and K. H. Mann, editors. 1989. Network analysis in marine ecology: methods and applications. Coastal and Estuarine Studies 32. Springer-Verlag, Heidelberg, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Christian, R.R., Stasavich, L.E., Thomas, C.R., Brinson, M.M. (2002). References is a Moving Target in Sea-Level Controlled Wetlands. In: Weinstein, M.P., Kreeger, D.A. (eds) Concepts and Controversies in Tidal Marsh Ecology. Springer, Dordrecht. https://doi.org/10.1007/0-306-47534-0_35

Download citation

  • DOI: https://doi.org/10.1007/0-306-47534-0_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6019-3

  • Online ISBN: 978-0-306-47534-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics