Skip to main content

Molecular Tools for Studying Biogeochemical Cycling in Salt Marshes

Molecular Studies of Bacteria

  • Chapter
Concepts and Controversies in Tidal Marsh Ecology

Abstract

Understanding biogeochemical processes in salt marshes will help elucidate their role as essential habitats. Since microbial activity accounts for nearly all of the biogeochemical cycling that occurs in the marsh environment, monitoring bacteria and their activity is fundamental to assessing marshes as sites for biogeochemical change. In the past, this has been accomplished using approaches that estimated the average response of the entire population of micro-organisms. These studies have proven very useful for computing overall fluxes and secondary production. However, questions of diversity, population dynamics, microbial ecology, and the role of specific bacteria responsible for a biogeochemical transformation have been difficult to approach using the traditional, bulk rate techniques. The recent revolution in biochemical methods has allowed microbiologists to now identify specific groups of bacteria in a natural sample. This is done by targeting specific macromolecules in the bacterial cells such as fatty acids, proteins, and nucleic acids to characterize the various microbial members of or community independent of the other bacteria and eukaryotes present in the sample. Such studies have begun to provide information on the variety, distribution, and gene regulation of particular bacteria responsible for a given biogeochemical process. Although a comprehensive overview of molecular techniques will not be feasible in this chapter, we shall discuss some principles of applying biochemical analysis to complex microbial communities. It is hoped the data obtained from molecular studies in marsh habitats in the future will lead to a better understanding of the linkages between the structure and the function of the microbial communities that mediate biogeochemical cycling in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Alard P, O. Lantz, M. Sebagh, C.F. Calvo, D. Weill, G. Chavanel, A. Senik and B. Charpentier. 1993. A versatile ELISA-PCR assay for mRNA quantitation from a few cells. Biotechniques 15: 730–7.

    PubMed  CAS  Google Scholar 

  • Amann, R.I., W. Ludwig and K..H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59:143–169.

    PubMed  CAS  Google Scholar 

  • Amann, R.I., J. Stromley, R. Devereux, R. Key and D.A. Stahl. 1992. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Applied & Environmental Microbiology 58:614–623.

    CAS  Google Scholar 

  • Atlas, R.M. and R. Bartha. 1993. Microbial ecology: fundamentals and applications. The Benjamin/ Cummings Publishing Company, Redwood City, California, USA.

    Google Scholar 

  • Avaniss-Aghajani, E., K. Jones, D. Chapman and C. Brunk. 1994. A molecular technique for identification of bacteria using small subunit ribosomal RNA sequences. Biotechniques 17:144–6.

    PubMed  CAS  Google Scholar 

  • Avaniss-Aghajani, E., K. Jones, A. Holtzman, T. Aronson, N. Glover, M. Boian, S. Froman and C.F. Brunk. 1996. Molecular technique for rapid identification of Mycobacteria. Journal of Clinical Microbiology 34:98–102.

    PubMed  CAS  Google Scholar 

  • Baath, E., M. Diazravina, A. Frostegard and C.D. Campbell. 1998. Effect of metal-rich sludge amendments on the soil microbial community. Applied & Environmental Microbiology 64: 238–245.

    CAS  Google Scholar 

  • Bard, D.G. and B.B. Ward. 1997. A species-specific bacterial productivity method using immunomagnetic separation and radiotracer experiments. Journal of Microbiological Methods 28:207–219.

    Article  CAS  Google Scholar 

  • Baumann, B., M. Snozzi, A.J.B. Zehnder and J.R. Vandermeer. 1996. Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture duringaerobic-anaerobicchanges. Journal of Bacteriology 178:4367–4374.

    PubMed  CAS  Google Scholar 

  • Becker-Andre, M. and K. Hahlbrock. 1989. Absolute mRNA quantification using the polymerase chain reaction (PCR): a novel approach by a PCR aided transcript titration assay (PATTY). Nucleic Acids Research 17:9437–9446.

    PubMed  CAS  Google Scholar 

  • Ben-Porath, J. and J.P. Zehr. 1994. Detection and characterization of Cyanobacterial nifH genes. Applied and Environmental Microbiology 60:880–887.

    PubMed  CAS  Google Scholar 

  • Boon, P.I., P. Virtue and P.D. Nichols. 1996. Microbial consortia in wetland sediments—a biomarker analysis of the effects of hydrological regime, vegetation and season on benthic microbes. Marine and Freshwater Research 47:27–41.

    Article  CAS  Google Scholar 

  • Boschker, H.T.S., S.C. Nold, P. Wellsbury, D. Bos, W. de Graaf, R. Pel, R.J. Parkes and T.E. Cappenberg. 1998. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392: 801–805.

    Article  CAS  Google Scholar 

  • Bowman J.P., P.E. Nichols, L.I. Sly. 1991. Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. FEMS Microbiology and Ecology 85: 15–22.

    CAS  Google Scholar 

  • Brinkhoff, T. and G. Muyzer. 1997. Increased species diversity and extended habitat range of sulfuroxidizing Thiomicrospira spp. Applied and Environmental Microbiology 63: 3789–3796.

    PubMed  CAS  Google Scholar 

  • Brusseau, G.A., E.S. Bulygina and R.S. Hanson. 1994. Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria. Applied and Environmental Microbiology 60: 626–636.

    PubMed  CAS  Google Scholar 

  • Cangelosi, G.A. and W.H. Brabant. 1997. Depletion of pre-16s rRNA in starved escherichia coli cells. Journal of Bacteriology 179:4457–4463.

    PubMed  CAS  Google Scholar 

  • Carpenter, E. 1983. Nitrogen in the marine environment. Academic Press, London, England.

    Google Scholar 

  • Cary, S.C. and S.J. Giovannoni. 1993. Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. Proceedings of the National Academy of Sciences, USA 90: 5695–5699.

    CAS  Google Scholar 

  • Cary, S.C., W. Warren, E. Anderson and S.J. Giovannoni 1993a. Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Molecular Marine Biology and Biotechnology 2:51–62.

    PubMed  CAS  Google Scholar 

  • 1993b. Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques, Molecular Marine Biology and Biotechnology 2:51–62.

    PubMed  CAS  Google Scholar 

  • Cho, B.C. and F. Azam. 1988. Major role of bacteria in biochemical fluxes in the ocean’s interior. Nature 332:441–443.

    Article  CAS  Google Scholar 

  • Clement, B.G., L.E. Kehl, K.L. Debord and C.L. Kitts. 1998. Terminal restrictionfragment patterns (TRFPS), a rapid, PCR-based method for the comparison of complex bacterial communities. Journal of Microbiological Methods 31:135–142.

    Article  CAS  Google Scholar 

  • Currin, C.A., H.W. Paerl, G.K. Suba and R.S. Alberte. 1990. Immunofluorescence detection and characterization of N2-fixing microorganisms from aquatic environments. Limnology and Oceanography 35: 59–71.

    CAS  Google Scholar 

  • Degrange, V. and R. Bardin. 1995. Detection and counting of Nitrobacter populations in soil by PCR. Applied and Environmental Microbiology 61: 2093–2098.

    PubMed  CAS  Google Scholar 

  • DeLong, E.F. 1992. Archaea in coastal marine environments, Proceedings of the National Academy of Sciences, USA 89: 5685–5689.

    CAS  Google Scholar 

  • DeLong, E.F., R.B. Frankel and D.A. Bazylinski. 1993. Multiple evolutionary origins of magnetotaxis in bacteria. Science 259: 803–806.

    PubMed  CAS  Google Scholar 

  • Devereux, R., M.E. Hines and D.A. Stahl 1996a. S cycling—characterization of natural communities of sulfate-reducing bacteria by 16s rRNA sequence comparisons. Microbial Ecology 32: 283–292.

    Article  PubMed  CAS  Google Scholar 

  • Devereux, R. and G.W. Mundfrom. 1994. A phylogenetic tree of 16s rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment. Applied and Environmental Microbiology 60: 3437–3439.

    PubMed  CAS  Google Scholar 

  • Devereux, R., M.R Winfrey, J. Winfrey and D.A. Stahl 1996b. Depth profile of sulfate-reducing bacterial ribosomal RNA and mercury methylation in an estuarine sediment. FEMS Microbiology and Ecology 20:23–31.

    CAS  Google Scholar 

  • Dower, W., J. F. Miller and C. W. Ragsdale. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Research 16: 6127–45.

    PubMed  CAS  Google Scholar 

  • Farrelly, V., F.A. Rainey and E. Stackebrandt. 1995. Effect of genome size and rrn gene copy number on PCR amplification of 16s rRNA genes from a mixture of bacterial species. Applied and Environmental Microbiology 61: 2798–2801.

    PubMed  CAS  Google Scholar 

  • Ferris, M.J., G. Muyzer and D.M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16s rRNA-defined populations inhabiting a hot spring microbial mat community. Applied and Environmental Microbiology 62: 340–346.

    PubMed  CAS  Google Scholar 

  • Findlay, R.H., M.B. Trexler, J.B. Guckert and D.C. White 1990a. Laboratory study of disturbance in marine sediments: response of a microbial community. Marine Ecology Progress Series 62:121–134.

    Google Scholar 

  • Findlay, R.H., M.B. Trexler and D.C. White 1990b. Response of a benthic microbial community to biotic disturbance. Marine Ecology Progress Series 62:135–148.

    Google Scholar 

  • Fischer, S.O. and L.S. Lerman. 1983. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proceedings of the National Academy of Sciences, USA 80: 1579–1583.

    CAS  Google Scholar 

  • Fuhrman, J.A., K. McCallum and A.A. Davis. 1993. Phylogenetic diversity ofsubsurface marine microbial communities from the Atlantic and Pacific oceans. Applied and Environmental Microbiology 59: 1294–1302.

    PubMed  CAS  Google Scholar 

  • Fuhrman, J. and F. Azam. 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica and California. Applied Environmental Microbiology 39: 1085–1091.

    CAS  Google Scholar 

  • Gilliland, G., S. Perrin, K. Blanchard and H.F. Bunn. 1990. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proceedings of the National Academy of Sciences, USA 87: 2725–2729.

    CAS  Google Scholar 

  • Giovannoni, S.J., T.B. Britschgi, C.L. Moyer and K.G. Field. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345: 60–63.

    Article  PubMed  CAS  Google Scholar 

  • Goldhaber, M.a.K., I. 1974 The Sulfur cycle. Pages 569–655 in E. Goldberg, editor. The Sea. John Wiley and Sons, New York, New York, USA.

    Google Scholar 

  • Gordon, D.A. and S. J. Giovannoni. 1996. Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific oceans. Applied and Environmental Microbiology 62: 1171–1177.

    PubMed  CAS  Google Scholar 

  • Gros, O., A. Darrasse, P. Durand, L. Frenkiel and M. Moueza. 1996. Environmental transmission of a sulfur-oxidizing bacterial gill endosymbiont in the tropical Lucinid bivalve Codakia orbicularis. Applied and Environmental Microbiology 62: 2324–2330.

    PubMed  CAS  Google Scholar 

  • Hales, B.A., C. Edwards, D.A. Ritchie, G. Hall, R.W. Pickup and J.R. Saunders. 1996. Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Applied and Environmental Microbiology 62: 668–675.

    PubMed  CAS  Google Scholar 

  • Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166: 557–80.

    PubMed  CAS  Google Scholar 

  • Hanson, R.S. and T.E. Hanson. 1996. Methanotrophic bacteria. Microbiological Reviews 60: 439–471.

    PubMed  CAS  Google Scholar 

  • Head, I. M., J. R. Saunders and R. W. Pickup. 1998. Microbial evolution, diveristy and ecology–a decade of ribosomal RNA analysis of uncultivated microorganisms. Microbial Ecology 35: 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann, R.F. and J.F. Shann. 1997. Microbial community changes during the composting of municipal solid waste. Microbial Ecology 33: 78–85.

    Article  PubMed  Google Scholar 

  • Holmes, A.J., A. Costello, M.E Lidstrom and J.C. Murrell 1995a. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiology Letters 132: 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, A.J., N.J.P. Owens and J.C. Murrell 1995b. Detection of novel marine methanotrophs using phylogenetic and functional gene probes after methane enrichment. Microbiology 141: 1947–1955.

    Article  PubMed  CAS  Google Scholar 

  • -1996. Molecular analysis of enrichment cultures of marine methane oxidising bacteria. Journal of Experimental Marine Biology and Ecology 203: 27–38.

    Article  CAS  Google Scholar 

  • Hugenholtz, P., B. M. Goebel and N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology 180: 4765–4774.

    PubMed  CAS  Google Scholar 

  • Jannasch, H.W. and M.J. Mottl. 1985. Geomicrobiology of deep-sea hydrothermal vents. Science 229: 717–725.

    CAS  PubMed  Google Scholar 

  • Kane, M.D., L.K. Poulsen and D.A. Stahl. 1993. Monitoring the enrichment and isolation of sulfatereducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16s rRNA sequences. Applied and Environmental Microbiology 59: 682–686.

    PubMed  CAS  Google Scholar 

  • Karkhoffschweizer, R.R., D.P.W. Huber and G. Voordouw. 1995. Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR. Applied and Environmental Microbiology 61: 290–296.

    CAS  Google Scholar 

  • Karl, D.M. 1995. Ecology of free-living, hydrothermal vent microbial communities. Pages 35–124 in D. M. Karl, fseditor. The microbiology of deep-sea hydrothermal vents. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Kemp, P.F. 1995. Can we estimate bacterial growth rates from ribosomal RNA content? Pages 279–302 in I. Joint, editor. Molecular ecology of aquatic microbes. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Kemp, P.F., S. Lee and J. LaRoche. 1993. Estimating the growth rate of slowly growing marine bacteria from RNA content. Applied and Environmental Microbiology 59: 2594–2601.

    PubMed  CAS  Google Scholar 

  • Kerkhof, L. and Speck, M. 1997. Ribosomal RNA gene dosage in marine bacteria, Molecular Marine Biology and Biotechnology 6: 260–267.

    PubMed  CAS  Google Scholar 

  • Kerkhof, L. and B.B. Ward. 1993. Comparison of nucleic acid hybridization and fluorometry for measurement of the relationship between RNA/DNA ratio and growth rate in a marine bacterium. Applied and Environmental Microbiology 59: 1303–1309.

    PubMed  CAS  Google Scholar 

  • Kirshtein, J.D., Paerl, H.W. and J. Zehr. 1991. Amplification, cloning and sequencing of a nifH segment from aquatic microorganisms and natural communities, Applied & Environmental Microbiology 57: 2645–2650.

    CAS  Google Scholar 

  • Kirshstein, J.D., J.P. Zehr and H.W. Paerl. 1993. Determination of N2 fixation potential in the marine environment: application of the polymerase chain reaction. Marine Ecology Progress Series 95: 305–309.

    Google Scholar 

  • Kohring, L.L., D.B. Ringelberg, R. Devereux, D.A. Stahl, M.W. Mittelman and D.C. White. 1994. Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfate-reducing bacteria. FEMS Microbiology Letters 119: 303–308.

    Article  PubMed  CAS  Google Scholar 

  • Krueger, D.M., R.G. Gustafson and C.M. Cavanaugh. 1996. Vertical transmission of chemoautotrophic symbionts in the bivalve Solemya velum (Bivalvia, Protobranchia). Biological Bulletin 190: 195–202.

    PubMed  CAS  Google Scholar 

  • Liu, W.T., T.L. Marsh, H. Cheng and L.J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment lengthpolymorphisms of genes encoding 16s rRNA. Applied and Environmental Microbiology 63: 4516–4522.

    PubMed  CAS  Google Scholar 

  • McDonald, I.R., G.H. Hall, R.W. Pickup and J.C. Murrell. 1996. Methane oxidation potential and preliminary analysis of methanotrophs in blanket bog peat using molecularecology techniques. FEMS Microbiology and Ecology 21: 197–211.

    CAS  Google Scholar 

  • McDonald, I.R., E.M. Kenna and J.C. Murrell. 1995. Detection of methanotrophic bacteria in environmental samples with the PCR. Applied and Environmental Microbiology 61: 116–121.

    PubMed  CAS  Google Scholar 

  • McDonald, I.R. and J.C. Murrell 1997a. The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Applied and Environmental Microbiology 63: 3218–3224.

    PubMed  CAS  Google Scholar 

  • -1997b. The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS Microbiology Letters 156: 205–210.

    Article  PubMed  CAS  Google Scholar 

  • Miguez, C.B., D. Bourque, J.A. Sealy, C.W. Greer and D. Groleau. 1997. Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (smmo) genes using the polymerase chain reaction (PCR). Microbial Ecology 33: 21–31.

    Article  PubMed  CAS  Google Scholar 

  • Morita, R.Y. 1982. Starvation-survival of heterotrophs in the marine environment. Pages 171–198 in K. Marshall, editor. Advances in Microbial Ecology. Plenum, New York, New York, USA.

    Google Scholar 

  • Murray, A.E., J.T. Hollibaugh and C. Orrego. 1996. Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16s rDNA fragments. Applied and Environmental Microbiology 62: 2676–2680.

    PubMed  CAS  Google Scholar 

  • Muyzer, G., E.C. De Waal and A.G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59: 695–700.

    PubMed  CAS  Google Scholar 

  • Muyzer, G., A. Teske, C.O. Wirsen and H.W. Jannasch. 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Archives of Microbiology 164: 165–172.

    Article  PubMed  CAS  Google Scholar 

  • Myers, R.M., V. Sheffield and D.R. Cox. 1988. Detection of single base changes in DNA: ribonuclease cleavage and denaturing gradient gel electrophoresis. Pages 000–000 in K. Davies, editor. Genomic Analysis: A practical approach.

    Google Scholar 

  • Myers, R.M., T. Maniatis and L.S. Lerman. 1987. Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods in Enzymology 155: 501–27.

    Article  PubMed  CAS  Google Scholar 

  • Neidhardt, F.C. and B. Magasanik. 1960. Studies on the role of ribonucleic acid in the growth of bacteria. Biochimica Biophysica Acta 42: 99–116.

    CAS  Google Scholar 

  • Nelson, D.C. and C.R. Fischer. 1995. Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps. Pages 125–000 in D. M. Karl, editor. The microbiology of deep-sea hydrothermal vents. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Paerl, H.W., J.C. Priscu and D.L. Brawner. 1989. Immunochemical localization of nitrogenase in marine Trichodesmium aggregates: relationship to N2 fixation potential. Applied and Environmental Microbiology 55: 2965–2975.

    PubMed  CAS  Google Scholar 

  • Paul, J.H. 1996. Carbon cycling — molecular regulation of photosynthetic carbon fixation. Microbial Ecology 32: 231–245.

    Article  PubMed  CAS  Google Scholar 

  • Paul, J.H., L. Cazares and J. Thurmond. 1990. Amplification of the rbcL gene from dissolved and particulate DNA from aquatic environments. Applied and Environmental Microbiology 56: 1963–1966.

    PubMed  CAS  Google Scholar 

  • Phelps, C. D., L. J. Kerkhof and L. Y. Young. 1998. Molecular characterization of a sulfate-reducing consortium which mineralizes benzene. FEMS Microbiology and Ecology 27: 269–279.

    Article  CAS  Google Scholar 

  • Pichard, S.L., L. Campbell and J.H. Paul. 1997. Diversity of the ribulose bisphosphate carboxylase/oxygenase form I gene (rbcl) in natural phytoplankton communities. Applied and Environmental Microbiology 63: 3600–3606.

    PubMed  CAS  Google Scholar 

  • Pichard, S.L., M.E. Frischer and J.H. Paul. 1993. Ribulaose bisphosphate carboxylase gene expression in subtropical marine phytoplankton populations. Marine Ecology Progress Series 101: 55–65.

    CAS  Google Scholar 

  • Pichard, S.L. and J.H. Paul. 1991. Detection of gene expression in genetically engineered microorganisms and natural phytoplankton populations in the marine environment by mRNA analysis. Applied and Environmental Microbiology 57: 1721–1727.

    PubMed  CAS  Google Scholar 

  • Pomeroy, L.R. 1974. The ocean’s food web, a changing paradigm. Bioscience 24: 499.

    Google Scholar 

  • Poulsen, L.K., G. Ballard and D.A. Stahl. 1993. Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Applied and Environmental Microbiology 59: 1354–1360.

    PubMed  CAS  Google Scholar 

  • Prescott, L.M., J.P. Harley and D.A. Klein. 1993. Microbiology. Wm. C. Brown Publishers, Dubuque, Iowa, USA.

    Google Scholar 

  • Rajendran, N., O. Matsuda, R. Rajendran and Y. Urushigawa. 1997. Comparative description of microbial community structure in surface sediments of eutrophic bays. Marine Pollution Bulletin 34: 26–33.

    Article  CAS  Google Scholar 

  • Rajendran, N., O. Matsuda, Y. Urushigawa and U. Simidu. 1994. Characterization of microbial community structure in the surface sediment of Osaka Bay, Japan, by phospholipid fatty acid analysis. Applied and Environmental Microbiology 60: 248–257.

    PubMed  CAS  Google Scholar 

  • Ringelberg, D.B., S. Sutton and D.C. White. 1997. Biomass, bioactivity and biodiversity—microbial ecology of the deep subsurface—analysis of ester-linked phospholipid fatty acids. FEMS Microbiology Reviews 20: 371–377.

    Article  CAS  Google Scholar 

  • Roslev, P., N. Iversen and K. Henriksens. 1998. Direct fingerprinting of metabolically active bacteria in environmental samples by substrate specific radiolabelling and lipid analysis. Journal of Microbiological Methods 31: 99–111.

    Article  CAS  Google Scholar 

  • Rosset, R., J. Julien and R. Monier. 1966. Ribonucleic acid composition of bacteria as a function of growth rate. Journal of Molecular Biology 18: 308–320.

    Article  PubMed  CAS  Google Scholar 

  • Rotthauwe, J.H., W. Deboer and W. Liesack. 1995. Comparative analysis of gene sequences encoding ammonia monooxygenase of Nitrosospira sp ahb-1 and Nitrosolobus multiformis c-71. FEMS Microbiology Letters 133: 131–135.

    Article  PubMed  CAS  Google Scholar 

  • Rotthauwe, J.H., K.P. Witzel and W. Liesack. 1997. The ammonia monooxygenase structural gene amoA as a functional marker—molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology 63: 4704–4712.

    PubMed  CAS  Google Scholar 

  • Scala, D. and L. Kerkhof. 1998. Three nitrous oxide reductase (nosz) genes from marine sediments and development of PCR primers for identification of denitrifiers. FEMS Microbiology Letters 162: 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Schaechter, M., O. Maalow and N.O. Kjelgaard. 1958. Depencency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. Journal of General Microbiology 19: 592–606.

    PubMed  CAS  Google Scholar 

  • Schmidt, T.M., D.F. DeLong and N.R. Pace. 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. Journal of Bacteriology 173: 4371–4378.

    PubMed  CAS  Google Scholar 

  • Sinigalliano, C.D., D.N. Kuhn and R.D. Jones. 1995. Amplification of the amoA gene from diverse species of ammonium-oxidizing bacteria and from an indigenous bacterial population from seawater. Applied and Environmental Microbiology 61: 2702–2706.

    PubMed  CAS  Google Scholar 

  • Stein, J.L., M. Haygood and H. Felbeck. 1990. Nucleotide sequence and expression of a deep-sea ribulose-1,5-bisphosphate carboxylase gene cloned from a chemoautotrophic bacterial endosymbiont. Proceedings of the National Academy of Sciences, USA 87: 8850–8854.

    CAS  Google Scholar 

  • Sundh, I., M. Nilsson and P. Borga. 1997. Variation in microbial community structure in two boreal peatlands as determined by analysis of phospholipid fattyacid profiles. Applied and Environmental Microbiology 63: 1476–1482.

    CAS  PubMed  Google Scholar 

  • Suzuki, M.T. and S.J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology 62: 625–630.

    PubMed  CAS  Google Scholar 

  • Suzuki, M.T., M.S. Rappe, Z.W. Haimberger, H. Winfield, N. Adair, J. Stroebel and S.J. Giovannoni. 1997. Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Applied and Environmental Microbiology 63: 983–989.

    PubMed  CAS  Google Scholar 

  • Torsvik, V., R. Sorheim and J. Goksoyr. 1996. Total bacterial diversity in soil and sediment communities: A review. Journal of Industrial Microbiology 17: 170–178.

    CAS  Google Scholar 

  • Utaker, J.B. and I.F. Nes. 1998. A qualitative evaluation of the published oligonucleotides specific for the 16S rRNA gene sequences of the ammonia-oxidizing bacteria. Systematic and Applied Microbiology 21: 72–88.

    PubMed  CAS  Google Scholar 

  • Van Es, F. and L. Meyer-Reil. 1982. Biomass and metabolic activity of heterotrophic marine bacteria. Pages 111–169 in K. Marshall, editor. Advances in Microbial Ecology. Plenum, New York, New York, USA.

    Google Scholar 

  • Voytek, M.A. and B.B. Ward. 1995. Detection of ammonium-oxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR. Applied and Environmental Microbiology 61: 1444–1450.

    PubMed  CAS  Google Scholar 

  • Wang, A.M., M.V. Doyle and D.F. Mark. 1989. Quantitation of mRNA by the polymerase chain reaction, Proceedings of the National Academy of Sciences, USA 86: 9717–9721.

    CAS  Google Scholar 

  • Ward, B.B. 1984. Combined autoradiography and immunofluorescence for estimation of single cell activity by ammonium-oxidizing bacteria. Limnology and Oceanography 29: 402–410.

    Article  Google Scholar 

  • -1995. Diversity of culturable denitrifying bacteria. Limits of rDNA RFLP analysis and probes for the functional gene, nitrite reductase. Archives of Microbiology 163: 167–175.

    CAS  Google Scholar 

  • -1996. Nitrification and denitrification: probing the nitrogen cycle in aquatic environments. Microbial Ecology 32: 247–261.

    Article  PubMed  CAS  Google Scholar 

  • Ward, B.B. and A.F. Carlucci. 1985. Marine ammonia-and nitrite-oxidizing bacteria: serological diversity determined by immunofluorescence in culture and in the environment. Applied and Environmental Microbiology 50: 194–201.

    PubMed  CAS  Google Scholar 

  • Ward, B.B. and A.R. Cockcroft. 1993. Immunofluorescence detection of the denitrifying strain Pseudomonas stutzeri (ATCC 14405) in seawater and intertidal sediment environments. Microbial Ecology 25: 233–246.

    Article  Google Scholar 

  • Ward, B.B., A.R. Cockcroft and K.A. Kilpatrick. 1993. Antibody and DNA probes for detection of nitrite reductase in seawater. Journal of General Microbiology 139: 2285–2293.

    PubMed  CAS  Google Scholar 

  • Ward, B.B., H.E. Glover and F. Lipschultz. 1989. Chemoautotrophic activity and nitrification in the oxygen minimum zone off Peru. Deep-sea Research 36: 1031–1057.

    Article  CAS  Google Scholar 

  • Ward, B.B., M.A. Voytek and K. P. Witzel. 1997. Phylogenetic diversity of natural populations of ammonia oxidizers investigated by specific PCR amplification. Microbial Ecology 33: 87–96.

    Article  PubMed  CAS  Google Scholar 

  • Ward, B.B. and O.C. Zafiriou. 1988. Nitrification and nitric oxide in the oxygen minimum of the eastern tropical north Pacific. Deep-Sea Research 35: 1127–1142.

    Article  CAS  Google Scholar 

  • Wawer, C. and G. Muyzer. 1995. Genetic diversity of Desulfovibrio spp in environmental samples analyzed by denaturing gradient gel electrophoresis of [nifE] hydrogenase gene fragments, Applied and Environmental Microbiology 61: 2203–2210.

    PubMed  CAS  Google Scholar 

  • White, D.C. 1988. Validation of quantitative analysis for microbial biomass, community structure and metabolic activity. Advances in Limnology 31: 1–18.

    Google Scholar 

  • White, D.C. 1993. In situ measurement of microbial biomass, community structure and nutritional status. Transactions of the Royal Society of London 344: 59–67.

    CAS  Google Scholar 

  • White, D.C. 1994. Is there anything else you need to understand about the microbiota that cannot be derived from analysis of nucleic acids? Microbial Ecology 28: 163–166.

    Article  CAS  Google Scholar 

  • White, D.C., J.O. Stair and D.B. Ringelberg. 1996. Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis. Journal of Industrial Microbiology and Biotechnology 17: 3–4.

    Google Scholar 

  • Woese, C.R. 1987. Bacterial evolution. Microbiological Review 51: 221–271.

    CAS  Google Scholar 

  • Wyman, M., J.P. Zehr and D.G. Capone. 1996. Temporal variability in nitrogenase gene expression in natural populations of the marine cyanobacterium Trichodesmium thiebautii. Applied and Environmental Microbiology 62: 1073–1075.

    CAS  PubMed  Google Scholar 

  • Xu, H.H. and F.R. Tabita. 1996. Ribulose-1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms, Applied and Environmental Microbiology 62: 1913–1921.

    PubMed  CAS  Google Scholar 

  • Zehr, J.P. and D.G. Capone. 1996. Problems and promises of assaying the genetic potential for nitrogen fixation in the marine environment, Microbial Ecology 32: 263–281.

    Article  PubMed  CAS  Google Scholar 

  • Zehr, J.P., M. Mellon, S. Braun, W. Litaker, T. Steppe and H.W. Paerl. 1995. Diversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat. Applied and Environmental Microbiology 61: 2527–2532.

    CAS  PubMed  Google Scholar 

  • Zumft, W.G. 1997. Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews 61: 533–616.

    PubMed  CAS  Google Scholar 

  • Zumft, W.G., A. Dreusch, S. Lochelt, H. Cuypers, B. Friedrich and B. Schneider. 1992. Derived amino acid sequences of the nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues. Implications for the CuA site of N2O reductase and cytochrome-c oxidase. European Journal of Biochemistry 208: 31–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kerkhof, L., Scala, D.J. (2002). Molecular Tools for Studying Biogeochemical Cycling in Salt Marshes. In: Weinstein, M.P., Kreeger, D.A. (eds) Concepts and Controversies in Tidal Marsh Ecology. Springer, Dordrecht. https://doi.org/10.1007/0-306-47534-0_20

Download citation

  • DOI: https://doi.org/10.1007/0-306-47534-0_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6019-3

  • Online ISBN: 978-0-306-47534-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics