Skip to main content

Salt Marsh Ecosystem Support of Marine Transient Species

  • Chapter

Abstract

One of the most important reasons stated in legislation for protecting salt marshes is their support of commercially and recreationally important nekton (fish and crustaceans). Yet, there is a surprising level of uncertainty among scientists regarding the role of salt marshes in supporting secondary production. The emphasis has been on “marine transient” species (in earlier literature often referred to as “estuarine dependent”) because they have life histories that seem designed to place young-of-the-year or juveniles in marsh habitats and because these species are often of commercial or recreational value. Salt marshes are believed to provide: 1) trophic support resulting in high growth rates, 2) increased survivorship due to lowered mortality, and 3) a suitable physico-chemical environment for development of young fishes. In this paper, we consider the evidence for each of these, with an emphasis on the trophic and survivorship aspects. The seasonally warmer temperatures of estuaries and salt marsh creeks apparently provide a metabolic advantage that supports high growth rates. The influence of marsh-derived organic matter in estuarine food webs is apparent, and its importance to marine transient fishes is supported by dietary, behavioral, and isotopic evidence. The major pathways by which marsh organic matter is transferred to fish are largely indirect, through microbial and invertebrate intermediaries. Invertebrates are the primary link to fish consumers of marsh-associated production, transforming microphytes, organic detritus, and microbial detrital heterotrophs into available biomass. Although most detrital organic carbon entering salt marsh systems, mainly from emergent grasses, is apparently respired by heterotrophs, the support of consumers by marsh plant detritus and microalgae can be equally important. The use of salt marsh detritus in food webs usually occurs in close proximity to the salt marsh indicating that outwelling of salt marsh organic matter offshore is not the dominant way that salt marshes support offshore fisheries. Salt marsh support of offshore fisheries is more probably by direct export of juvenile fish biomass and a trophic relay involving ontogenetic and cyclic migrations of nekton species, rather than export of organic detritus. Understanding the controls on marine transient fish mortality is probably the most problematic and least studied aspect of their ecology. The few estimates of mortality rates of fishes in estuaries are as high as, or higher than, mortality rates of fishes in other marine and freshwater ecosystems. However, because of faster growth rates, fish spend less time in the small stages with the higher mortality rates. Within estuaries, mortality rates for some species, but not all, are lower in marsh creeks compared to more open areas. The value of marshes as refuge habitat is probably due to the interaction of temperature, turbidity, and vegetative structure in restricting the foraging of piscine predators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Able, K. W. and M. P. Fahay. 1998. The first year in the life of estuarine fishes in the Middle Atlantic Bight, Rutgers University Press, New Brunswick, New Jersey, USA.

    Google Scholar 

  • Abrahams, M. and M. Kattenfeld. 1997. The role of turbidity as a constraint on predator-prey interactions in aquatic environments. Behavioral Ecology and Sociobiology 40:169–174.

    Article  Google Scholar 

  • Alber, M. and I. Valiela. 1994. Production of microbial organic aggregates from macrophyte-derived dissolved organic material. Limnology and Oceanography 39:37–50.

    CAS  Google Scholar 

  • Allen, E. A., P. E. Fell, M. A. Peck, J. A. Gieg, C. R. Guthke and M. D. Newkirk. 1994. Gut contents of common mummichogs, Fundulus heteroclitus L., in a restored impounded marsh and in natural reference marshes. Estuaries 17:462–471.

    Google Scholar 

  • Baird, S. F. 1873. Report on the condition of the sea fisheries of the south coast of New England and in 1871 and 1872, Part 1, U. S. Commission of Fish and Fisheries, Washington, District of Columbia, USA.

    Google Scholar 

  • Baker-Dittus, A. M. 1978. Foraging patterns of three sympatric killifish. Copeia 1978:383–389.

    Google Scholar 

  • Baltz, D. M., C. Rakocinski and J. W. Fleeger. 1993. Microhabitat use by marsh-edge fishes in a Louisiana estuary. Environmental Biology of Fishes 36:109–126.

    Google Scholar 

  • Benner, R., M. L. Fogel, E. K. Sprague and R. E. Hodson. 1987. Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329:708–710.

    CAS  Google Scholar 

  • Bigelow, H. B. and W. C. Schroeder. 1953. Fishes of the Gulf of Maine, Fishery Bulletin of the Fish and Wildlife Service 53, U.S. Government Printing Office, Washington, District of Columbia, USA

    Google Scholar 

  • Blaber, S. J. M. and T. G. Blaber. 1980. Factors affecting the distribution of juvenile estuarine and inshore fish. Journal of Fish Biology 17:143–162.

    Google Scholar 

  • Boesch, D. F. and R. E. Turner. 1984. Dependence of fishery species on salt marshes: the role of food and refuge. Estuaries 7:460–468.

    Google Scholar 

  • Bozeman, E.L., Jr. and J. M. Dean. 1980. The abundance of estuarine larval and juvenile fish in a South Carolina intertidal creek. Estuaries 3:89–97.

    Google Scholar 

  • Bray, R. N., A. C. Miller, and D. G. Geesey. 1981. The fish connection: a trophic link between planktonic and rock reef communities. Science 214:204–205.

    PubMed  Google Scholar 

  • Bray, R. N. and A. C. Miller. 1985. Planktivorous fishes: their potential as nutrient importers to artificial reefs. Bulletin of Marine Science 37:396

    Google Scholar 

  • Cain, R. E. and J. M. Dean. 1976. Annual occurrence, abundance and diversity of fish in a South Carolina intertidal creek, Marine Biology 36:369–379.

    Article  Google Scholar 

  • Cattrijsse, A., E. S. Makwaia, H. R. Dankwa, O. Hamerlynck and M. A. Hemminga. 1994. Nekton communities of an intertidal creek of a European estuarine brackish marsh. Marine Ecology Progress Series 109:195–208.

    Google Scholar 

  • Chrzanowski, T. H. and J. D. Spurrier. 1987. Exchange of microbial biomass between a Spartina alterniflora marsh and the adjacent tidal creek. Estuaries 10:118–125.

    Google Scholar 

  • Cifuentes, L. A. 1991. Spatial and temporal variations in terrestrially-derived organic matter from sediments of the Delaware Estuary. Estuaries 14:414–429.

    CAS  Google Scholar 

  • Coffin, R. B., B. Fry, B. J. Peterson and R. T. Wright. 1989. Carbon isotopic compositions of estuarine bacteria. Limnology and Oceanography 34:1305–1310.

    CAS  Google Scholar 

  • Conover, D. O. and M. R. Ross. 1982. Patterns in seasonal abundance, growth and biomass of the Atlantic silverside, Menidia menidia, in a New England estuary. Estuaries 5:275–286.

    Google Scholar 

  • Couch, C. A.1989. Carbon and nitrogen stableisotopes of meiobenthos and their food resources. Estuarine, Coastal and Shelf Science 28:433–441.

    Article  Google Scholar 

  • Currin, B. M., J. P. Reed and J. M. Miller. 1984. Growth, production, food consumption and mortality of juvenile spot and croaker: a comparison of tidal and non-tidal nursery areas. Estuaries 7:451–459.

    Google Scholar 

  • Currin, C. A., S. Y. Newell and H. W. Paerl. 1995. The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis. Marine Ecology Progress Series 121:99–116.

    Google Scholar 

  • Cushing, D. R. 1975. Marine ecology and fisheries. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Cyrus, D. P. and S. J. M. Blaber. 1987. The influence of turbidity on juvenile marine fish in the estuaries of Natal, South Africa. Continental Shelf Research 7:1411–1416.

    Article  Google Scholar 

  • D’Avanzo, C., M. Alber and I. Valiela. 1991. Nitrogen assimilation from amorphous detritus by two coastal consumers. Estuarine, Coastal and Shelf Science 33:203–209.

    Google Scholar 

  • Dame, R. F. 1989. The importance of Spartina alterniflora to Atlantic coast estuaries, Reviews in Aquatic Sciences 1:639–660.

    Google Scholar 

  • Darnell, R. M. 1961. Trophic spectrum of an estuarine community, based on studies of Lake Pontchartrain, Louisiana. Ecology 42:553–568.

    Google Scholar 

  • Day, J. W. Jr, C. A. S. Hall, W. M. Kemp and A. Yanez-Arancibia. 1989. Estuarine Ecology. John Wiley and Sons, New York, New York, USA.

    Google Scholar 

  • Deegan, L. A. 1990. Effects of estuarine environmental conditions on population dynamics of young-of-the-year gulf menhaden. Marine Ecology Progress Series 68:195–205.

    Google Scholar 

  • -1993. Nutrient and energy transport between estuaries and coastal marine ecosystems by fish migration. Canadian Journal of Fisheries and Aquatic Sciences 50: 74–79.

    Article  Google Scholar 

  • Deegan, L. A. and B. A. Thompson. 1985. The ecology of fish communities in the Mississippi River deltaic plain. Pages 35–56 in A. Yáñez-Arancibia, editor. Fish community ecology in estuaries and coastal lagoons: towards an ecosystems integration. DR (R) UNAM Press, Mexico City, Mexico.

    Google Scholar 

  • Deegan, L. A. and Day, J. W., Jr. (1984) Estuarine fishery habitat requirements. Pages 315–336 in B. J Copeland, K. Hart, N. Davis and S. Friday, editors. Research for managing the nation’s estuaries: proceedings of a conference in Raleigh, North Carolina, UNC Sea Grant College Publication UNC-SG-84-08, Raleigh, North Carolina, USA.

    Google Scholar 

  • Deegan, L. A. and R. H. Garritt. 1997. Evidence for spatial variability in estuarine food webs. Marine Ecology Progress Series 147:31–47.

    Google Scholar 

  • Deegan, L. A., W. B. Johnson, J. W. Day, Jr., J. G. Gosselink and A. Yáñez-Arancibia. 1983. Relationships between primary productivity and physical characteristics in eight Gulf of Mexico estuaries. Final report to the Office of Marine Pollution, CELFI, Louisiana State University, Baton Rouge, Louisiana, USA.

    Google Scholar 

  • Deegan, L. A., B. J. Peterson and R. Porter. 1990. Stable isotopes and cellulase activity as evidence for detritus as a food source for juvenile gulf menhaden. Estuaries 13:14–19.

    Google Scholar 

  • DeLaune, R. D. and C. W. Lindau. 1987. δ13C signature of organic carbon in estuarine bottom sediment as an indicator of carbon export from adjacent marshes. Biogeochemistry 4:225–230.

    Article  CAS  Google Scholar 

  • Ember, L. M., D. F. Williams and J. T. Morris. 1987. Processes that influence carbon isotope variations in salt marsh sediments. Marine Ecology Progress Series 36:33–42.

    Google Scholar 

  • Evans, D. 1998. The Physiology of Fishes. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Feller, R. J., B. C. Coull and B. T. Hentschel. 1990. Meiobenthic copepods: tracers of where juvenile Leiostomus xanthurus (Pisces) feed? Canadian Journal of Fisheries and Aquatic Sciences 47:1913–1919.

    Google Scholar 

  • Fogel, M. L., E. K. Sprague, A. P. Gize and R. W. Frey. 1989. Diagenesis of organic matter in Georgia salt marshes. Estuarine, Coastal and Shelf Science 28:211–230.

    CAS  Google Scholar 

  • Fry, B., M. Hullar, B. J. Peterson, S. Saupe and R. T. Wright. 1992. DOC production in a salt marsh estuary, Archives fur Hydrobioliske Beih. 37:1–8.

    CAS  Google Scholar 

  • Grecay, P. A. and T. E. Targett. 1996. Effects of turbidity, light level and prey concentration on feeding of juvenile weakfish Cynoscion regalis. Marine Ecology Progress Series 131:11–16.

    Google Scholar 

  • Gregg, J. C. and J. W. Fleeger Jr. 1997. Importance of emerged and suspended meiofauna to the diet of the darter goby (Gobionellus boleosoma Jordan and Gilbert). Journal of Experimental Marine Biology and Ecology 209:123–142.

    Article  Google Scholar 

  • Gulland, J. A. 1964. Survival of the youngest stages of fish and its relation to year class strength. ICNAF Special Publication 6:363–372.

    Google Scholar 

  • Hackney, C. T. and E. B. Haines. 1980. Stable carbon isotope composition of fauna and organic matter collected in a Mississippi estuary. Estuarine and Coastal Marine Science 10:703–708.

    CAS  Google Scholar 

  • Haedrich, R. L. 1983. Estuarine fishes. Pages 183–207 in B. H. Ketchum, editor. Ecosystems of the world. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Haines, E. B. 1977. The origins of detritus in Georgia salt marsh estuaries. Oikos 29:254–260.

    Google Scholar 

  • -1979a. Interactions between Georgia salt marshes and coastal waters: a changing paradigm. Pages 35–46 in R. J. Livingston, editor. Ecological processes in coastal and marine systems. Plenum Press, New York, New York, USA.

    Google Scholar 

  • -1979b. Nitrogen pools in Georgia coastal waters. Estuaries 2:34–39.

    CAS  Google Scholar 

  • Haines, E. B. and C. L. Montague. 1979. Food sources of estuarine invertebrates analyzed using 13C/12C ratios. Ecology 60:48–56.

    Google Scholar 

  • Hecht, T. and C. D. vander Lingen. 1992. Turbidity-induced changes in feeding strategies of fish in estuaries. South African Journal of Zoology 27:95–107.

    Google Scholar 

  • Heck, K. L. and L. B. Crowder. 1991. Habitat structure and predator-prey interactions in vegetated aquatic systems. Pages 281–299 in S. S. Bell, E. D. McCoy and H. R. Mushinsky, editors. Habitat structure. Chapman and Hall, London, England.

    Google Scholar 

  • Heck, K. L. and R J. Orth. 1980. Sea grass habitats: the role of habitat complexity, competition and predation in structuring associated fish and motile invertebrate assemblages. Pages 449–464 in V.S. Kennedy, editor. Estuarine perspectives. Academic Press, New York, New York, USA.

    Google Scholar 

  • Heinle, D. R. and D. A. Flemer. 1976. Flows of materials between poorly flooded tidal marshes and an estuary. Marine Biology 35:359–373.

    Article  Google Scholar 

  • Heinle, R. R., R. P. Harris, J. F. Ustach and D. A. Flemer. 1977. Detritus as food for estuarine copepods. Marine Biology 40:341–353.

    Article  Google Scholar 

  • Hemminga, M. A., A. Cattrijsse and A. Wielemaker. 1996. Bedload and nearbed detritus transport in a tidal saltmarsh creek. Estuarine, Coastal and Shelf Science 42:55–62.

    Article  CAS  Google Scholar 

  • Hines, A. H., R. N. Lipcius and A. M. Haddon. 1987. Predation dynamics and habitat partitioning by size, sex and molt stage of blue crabs Callinectes sapidus in a subestuary of central Chesapeake Bay. Marine Ecology Progress Series 36:55–64.

    Google Scholar 

  • Hines, A. H., A. M. Haddon and L. A. Wiechert. 1990. Guild structure and foraging impact of blue crabs and epibenthic fish in a subestuary of Chesapeake Bay. Marine Ecology Progress Series 67:105–126.

    Google Scholar 

  • Hoar, W. S., D. J. Randell and J. R. Brett. 1979. Fish physiology, Vol. III. Bioenergetics and growth. Academic Press, New York, New York, USA.

    Google Scholar 

  • Holmes, R. M., B. J. Peterson, L. A. Deegan, J. E. Hughes and B Fry (2000). Nitrogen biogeochemistry in the oligohaline zone of a New England estuary. Ecology.

    Google Scholar 

  • Houde, E. and E. Rutherford. 1993. Recent trends in estuarine fisheries: predictions of fish production and yield. Estuaries 16:161–176.

    Google Scholar 

  • Houde, E. D. and C. E. Zastrow. 1993. Ecosystem-and taxon-specific dynamic and energetics properties of larval fish assemblages. Bulletin of Marine Science 53:290–329.

    Google Scholar 

  • Howarth, R. W. and J. M. Teal. 1980. Energy flow in a salt marsh ecosystem: the role of reduced inorganic sulfur compounds. American Naturalist 116:862–872.

    Article  CAS  Google Scholar 

  • Hughes, E. H. and E. B. Sherr. 1983. Subtidal food webs in a Georgia estuary: δ13C analysis. Journal of Experimental Marine Biology and Ecology 67:227–242.

    Article  Google Scholar 

  • Hughes, J. E., L. A. Deegan, B. J. Peterson, R. M. Holmes and B. Fry (2000). Nitrogen flow through the food web in the oligohaline zone of a New England estuary. Ecology 81:433–452.

    Google Scholar 

  • Hyatt, K. D. 1979. Feeding strategy. Pages 71–119 in W.S. Hoar, D. J. Randell and I.R. Brett, editors. Biogenetics and growth. Volume XI, Academic Press, New York, New York, USA.

    Google Scholar 

  • Javonillo, R., L. A Deegan, K. Chiaravalle and J. E. Hughes. 1997. The importance of access to salt-marsh surface to short-term growth of Fundulus heteroclitus in a New England salt marsh. Biological Bulletin 193:288–289.

    Google Scholar 

  • Joseph, E. B. 1973. Analysis of a nursery ground. Pages 118–121 in A. L. Pacheco, editor. Proceedings of a workshop on egg, larval and juvenile stages of fish in Atlantic Coast estuaries. Technical Publication No. 1, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Mid-Atlantic Coast Fisheries Center, Highlands, New Jersey, USA.

    Google Scholar 

  • Juanes, F., R. E. Marks, K. A. McKown and D. O. Conover. 1993. Predation by age-0 bluefish on age-0 anodromous fishes in the Hudson River estuary. Transactions of the American Fisheries Society 122:348–356.

    Article  Google Scholar 

  • Kneib, R. T. 1982. The effects of predation by wading birds (Areidae) and blue crabs (Callinectes sapidus) on the population size structure of the common mummichog, Fundulus heteroclitus. Estuarine, Coastal and Shelf Science 14:159–165.

    Google Scholar 

  • -1984. Patterns of invertebrate distribution and abundance in the intertidal salt marsh: causes and questions. Estuaries 7:392–412.

    Google Scholar 

  • -1986. The role of Fundulus heteroclitus in salt marsh trophic dynamics. American Zoologist 26:259–269.

    Google Scholar 

  • -1987. Predation risk and use of intertidal habitats by young fish and shrimp. Ecology 68:379–386.

    Google Scholar 

  • -1988. Testing for indirect effects of predation in an intertidal soft-bottom community. Ecology 69:1795–1805.

    Google Scholar 

  • -1993. Growth and mortality in successive cohorts of fish larvae within an estuarine nursery. Marine Ecology Progress Series 94:115–127.

    Google Scholar 

  • -1997. The role of tidal marshes in the ecology of estuarine nekton. Pages 163–220 in A. D. Ansell, R. N. Gibson and M. Barnes, editors. Oceanography and Marine Biology: An Annual Review. 35:163–220.

    Google Scholar 

  • Kneib, R. T., A. E. Stiven and E. B. Haines. 1980. Stable carbon isotope ratios in Fundulus heteroclitus (L.) muscle tissue and gut contents from a North Carolina Spartina marsh. Journal of Experimental Marine Biology and Ecology 46:89–98.

    Article  CAS  Google Scholar 

  • Kneib, R. T. and S. L. Wagner. 1994. Nekton use of vegetated marsh habitats at different stages of tidal inundation. Marine Ecology Progress Series 106:227–238.

    Google Scholar 

  • Larson, E. T. and A. L. Shanks. 1996. Consumption of marine snow by two species of juvenile mullet and its contribution to their growth. Marine Ecology Progress Series 130:19–28.

    Google Scholar 

  • Lenanton, R. C. J. 1982. Alternative nonestuarine nursery habitats for some commercially and recreationally important fish species of southwestern Australia. Australian Journal of Marine and Freshwater Research 33:881–900.

    Article  Google Scholar 

  • Lewis, V. P. and D. S. Peters. 1994. Diet of juvenile and adult Atlantic menhaden in estuarine and coastal habitats. Transactions of the American Fisheries Society 123:803–810.

    Article  Google Scholar 

  • Longhurst, A. R. 1976. Vertical migration. Pages 116–137 in D. H. Cushing and J. J. Walsh, editors. The ecology of the seas. Oxford Blackwell Scientific Publications, London, England.

    Google Scholar 

  • Mallin, M. A., J. M. Burkholder and M. J. Sullivan. 1992. Contributions of benthic microalgae to coastal fishery yield. Transactions of the American Fisheries Society 121:691–693.

    Article  Google Scholar 

  • Mann, K. H. 1988. Production and use of detritus in various freshwater, estuarine and coastal marine ecosystems. Limnology and Oceanography 33:910–930.

    Article  CAS  Google Scholar 

  • McIvor, C. C. and W. E. Odum. 1988. Food, predation risk and microhabitat selection in a marsh fish assemblage. Ecology 69:1341–1351.

    Google Scholar 

  • Meredith, W. H. and V. A. Lotrich. 1979. Production dynamics of a tidal creek population of Fundulus heteroclitus (L.). Estuarine, Coastal and Marine Science 7:99–118.

    Google Scholar 

  • Meyer, J. L. and E. T. Schultz 1985a. Tissue condition and growth rate of corals associated with schooling fish. Limnology and Oceanography 30:157–166.

    Google Scholar 

  • -1985b. Migrating haemulid fishes as a source of nutrients and organic matter on coral reefs. Limnology and Oceanography 30:146–156.

    Google Scholar 

  • Meyer, J. L., E. T. Schultz and G. S. Helfman. 1983. Fish schools: an asset to corals. Science 220:1047–1049.

    CAS  PubMed  Google Scholar 

  • Miller, J. M. and M. L. Dunn. 1980. Feeding strategies and patterns of movement in juvenile estuarine fishes. Pages 437–448 in V. S. Kennedy, editor. Estuarine perspectives. Academic Press, New York, New York, USA.

    Google Scholar 

  • Miltner, R. J., S. W. Ross and M. H. Posey. 1995. Influence of food and predation on the depth distribution of juvenile spot (Leiostomus xanthurus) in tidal nurseries. Canadian Journal of Fisheries and Aquatic Sciences 52:971–982.

    Article  Google Scholar 

  • Minello, T. J. and R. J. Zimmerman. 1983. Fish predation on juvenile brown shrimp, Penaeus aztecus Ives: the effect of simulated Spartina structure on predation rates. Journal of Experimental Marine Biology and Ecology 72:211–231.

    Article  Google Scholar 

  • Minello, T. J., R. J. Zimmerman and E. X. Martinez. 1987. Fish predation on juvenile brown shrimp, Penaeus aztecus Ives: effects of turbidity and substratum on predation rates. FisheryBulletin, US 85:59–70.

    Google Scholar 

  • -1989. Mortality of young brown shrimp Penaeus aztecus in estuarine nurseries. Transactions of the American Fisheries Society 118:693–708.

    Article  Google Scholar 

  • Montague, C. L., S. M. Bunker, E. B. Haines, M. L. Pace and R. L. Wetzel. 1981. Aquatic macroconsumers. Pages 69–85 in L. R. Pomeroy and R. G. Wiegert, editors. The Ecology of a salt marsh. Springer-Verlag, New York, New York, USA.

    Google Scholar 

  • Monteleone, D. M. and E. D. Houde. 1992. Vulnerability of striped bass Morone saxatilis Waldbaum eggs and larvae to predation by juvenile white perch Morone americana Gmelin. Journal of Experimental Marine Biology and Ecology 158:93–104.

    Article  Google Scholar 

  • Moore, J. W. and J. A. Moore. 1976. The basis of food selection in flounders, Platichthys flesus (L.) in the Severn estuary. Journal of Fish Biology 9:139–156.

    Google Scholar 

  • Murphy, S. C. 1991. The ecology of estuarine fishes in southern Maine high salt marshes: access corridors and movement patterns. Thesis, University of Massachusetts, Amherst, Massachusetts, USA.

    Google Scholar 

  • Newell, R. I. E. and C. J. Langdon. 1986. Digestion and absorption of refractory carbon from the plant Spartina alterniflora by the oyster Crassostrea virginica. Marine Ecology Progress Series 34:105–115.

    CAS  Google Scholar 

  • Nikolsky, G.V. 1963. The ecology of fishes, Academic Press, New York, New York, USA, 352 p.

    Google Scholar 

  • Nixon, S. W. 1980. Between coastal marshes and coastal waters—a review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. Pages 437–525 in P. Hamilton and K. B. Macdonald, editors. Estuarine and wetland processes. Plenum Press, New York, New York, USA.

    Google Scholar 

  • Nixon, S. W. and C. Oviatt. 1973. Ecology of a New England salt marsh. Ecological Monographs 43:463–498.

    Google Scholar 

  • Odum, E. P. 1968. A research challenge: evaluating the productivity of coastal and estuarine waters. Proceedings of the 2nd Sea Grant Coference, Graduate School of Oceanography, University of Rhode Island, Kingston, Rhode Island, USA.

    Google Scholar 

  • -1980. The status of three ecosystem level hypotheses regarding salt marshes: tidal subsidy, outwelling and the detritus based food chain. Pages 485–496 in V. S. Kennedy, editor. Estuarine perspectives. Academic Press, New York, New York, USA.

    Google Scholar 

  • Odum, W. E., J. S. Fisher and J. C. Pickral. 1979. Factors controlling the flux of particulate organic carbon from estuarine wetlands. Pages 69–80 in R. J. Livingston, editor. Ecological processes in coastal and marine systems. Plenum Press, New York, New York, USA.

    Google Scholar 

  • Pearcy, W. G. 1962. Ecology of an estuarine populations of winter flounder (Psuedopleronectes amaericanus). Bulletin of the Bingham Oceanographic Collection 18:39–64.

    Google Scholar 

  • Peters, D. S. and W. E. Schaaf. 1981. Food requirements and sources for juvenile Atlantic menhaden. Transactions of the American Fisheries Society 110:317–324.

    Article  Google Scholar 

  • Peterson, B. J. and R. W. Howarth. 1987. Sulfur, carbon and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia. Limnology and Oceanography 32:1195–1213.

    CAS  Google Scholar 

  • Peterson, B. J. and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecological Systems 18:293–320.

    Google Scholar 

  • Peterson, B. J., B. Fry, M. Hullar, S. Saupe and R. Wright. 1994. The distribution and stable carbon isotopic composition of dissolved organic carbon in estuaries. Estuaries 17:111–121.

    CAS  Google Scholar 

  • Peterson, B. J., R. W. Howarth and R. H. Garritt. 1985. Multiple stable isotope used to trace the flow of organic matter in estuarine food webs. Science 227:1361–1363.

    PubMed  Google Scholar 

  • -1986. Sulfur and carbon isotopes as tracers of salt-marsh organic matter flow. Ecology 67:865–874.

    CAS  Google Scholar 

  • Peterson, B. J., R. W. Howarth, F. Lipschultz and D. Ashendorf. 1980. Salt marsh detritus: an alternative interpretation of stable carbon isotope ratios and the fate of Spartina alterniflora. Oikos 34:1730–177.

    Google Scholar 

  • Peterson, G. W. and R. E. Turner. 1994. The value of salt marsh edge vs. interior as a habitat for fish and decapod crustaceans in a Louisiana tidal marsh. Estuaries 17:235–262.

    Google Scholar 

  • Pomeroy, L. R. and R. G. Wiegert, editors. 1981. The Ecology of a salt marsh. Springer-Verlag Inc., New York, New York, USA.

    Google Scholar 

  • Ribelin, B. W. and A. W. Collier. 1979. Ecological considerations of detrital aggregates in the salt marsh. Pages 47–68 in R. J. Livingston, editor. Ecological processes in coastal and marine systems. Plenum Press, New York, New York, USA.

    Google Scholar 

  • Rountree, R. A. 1990. Community structure of fishes attracted to shallow water fish aggregation devices off South Carolina, USA. Environmental Biology of Fishes 29:241–162.

    Article  Google Scholar 

  • -1992. Fish and macroinvertebrate community structure and habitat use patterns in salt marsh creeks of southern New Jersey, with a discussion of marsh carbon export. Dissertation, Rutgers, The State University, New Brunswick, New Jersey, USA.

    Google Scholar 

  • Rountree, R. A. and K. W. Able 1992a. Fauna of polyhaline subtidal marsh creeks in southern New Jersey: composition, abundance and biomass. Estuaries 15:171–185.

    Google Scholar 

  • -1992b. Foraging habits, growth and temporal patterns of salt marsh creek habitat use by juvenile summer flounder in New Jersey. Transactions of the American Fisheries Society 121:765–776.

    Article  Google Scholar 

  • -1993. Diel variation in decapod crustacean and fish assemblages in New Jersey marsh creeks. Estuarine, Coastal and Shelf Science 37:181–201.

    Article  Google Scholar 

  • -1996. Seasonal abundance, growth and foraging habits of juvenile smooth dogfish, Mustelus canis, in a New Jersey estuary. Fishery Bulletin 94:522–534.

    Google Scholar 

  • -1997 Nocturnal fish use of New Jersey marsh creek and adjacent bay habitats. Estuarine, Coastal and Shelf Science 44:703–711.

    Article  Google Scholar 

  • Rozas, L. P. 1995. Hydroperiod and its influence on nekton use of the salt marsh: a pulsing ecosystem. Estuaries 18:579–590.

    Google Scholar 

  • Rozas, L. P. and D. J. Reed. 1993. Nekton use of marsh-surface habitats in Louisiana (USA) deltaic salt marshes undergoing submergence. Marine Ecology Progress Series 96:147:157.

    Google Scholar 

  • Rozas, L. P. and M. W. LaSalle. 1990. A comparison of the diets of Gulf killifish, Fundulus grandis Baird and Girard, entering and leaving a Mississippi brackish marsh. Estuaries 13:332–336.

    Google Scholar 

  • Rozas, L. P. and W. E. Odum. 1987. Use of tidal freshwater marshes by fishes and macrofaunal crustaceans along a marsh stream-order gradient. Estuaries 10:36–43.

    Google Scholar 

  • Ruiz, G. M., A. H. Hines and M. H. Posey. 1993. Shallow water as a refuge habitat for fish and crustaceans in non-vegetated estuaries: an example from Chesapeake Bay. Marine Ecology Progress Series 99:1–16.

    Google Scholar 

  • Schaaf, W. E. and I. S. Peters. 1992. Reply to Mallin et al. (1992). Transactions of the American Fisheries Society 121:693–695.

    Google Scholar 

  • Sherr, E. B. 1982. Carbon isotope composition of organic seston and sediments in a Georgia salt marsh estuary. Geochimica et Cosmochimica Acta 46:1227–1232.

    Article  CAS  Google Scholar 

  • Smith, M. W. 1966. Amount of organic matter lost to a lake by migration of eels. Journal of Fisheries Research Board of Canada 23:1799–1801.

    Google Scholar 

  • Sogard, S. M. and K. W. Able. 1991. A comparison of eelgrass, sea lettuce, macroalgae and marsh creeks as habitats for epibenthic fishes and decapods. Estuarine, Coastal and Shelf Science 33:501–519.

    Article  Google Scholar 

  • Stribling, J. M. and J. C. Cornwell 1997. Identification of important primary producers in a Chesapeake Bay tidal creek system using stable isotopes of carbon and sulfur. Estuaries 20:77–85.

    CAS  Google Scholar 

  • Sullivan, M. J. and C. A. Moncreiff. 1990. Edaphic algae are an important component of salt marsh food-webs: evidence from multiple stable isotope analyses. Marine Ecology Progress Series 62:149–159.

    Google Scholar 

  • Teal, J. M. 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43:614–624.

    Google Scholar 

  • Tenore, K. R., L. Cammen, S. E. G. Findlay and N. Phillips. 1982. Perspectives of research on detritus: do factors controlling the availability of detritus to macroconsumers depend on its source? Journal of Marine Research 40:473–490.

    CAS  Google Scholar 

  • Thayer, G. W. 1974. Identity and regulation of nutrients limiting phytoplankton production in the shallow estuaries near Beaufort, NC. Oecologia 14:75–92.

    Article  Google Scholar 

  • Turner, R. E. 1978. Community plankton respiration in a salt marsh estuary and the importance of macrophytic leachates. Limnology and Oceanography 23:442–451.

    Article  Google Scholar 

  • Valiela, I. 1995. Marine ecological processes. Springer-Verlag, New York, New York, USA.

    Google Scholar 

  • Valiela, I., J. M. Teal, S. Volkmann, D. Shafer and E. J. Carpenter. 1978. Nutrient and paniculate fluxes in a salt marsh ecosystem: tidal exchanges and inputs by precipitation and groundwater. Limnology and Oceanography 23:798–812.

    CAS  Google Scholar 

  • Vince, S., I. Valiela and N. Backus. 1976. Predation by the salt marsh killifish Fundulus heteroclitus (L.) in relation to prey size and habitat structure: consequences for prey distribution and abundance. Journal of Experimental Marine Biology and Ecology 23:255–266.

    Article  Google Scholar 

  • Vinogradov, M. E. 1953. The role of vertical migration of the zooplankton in the feeding of deep-sea animals. Priroda, Musk 6:95–96.

    Google Scholar 

  • -1955. Vertical migrations of zooplankton and their importance for the nutrition of abyssal pelagic faunas. Trudy Inst. Okeanol. USSR 13:71–76.

    Google Scholar 

  • Virnstein, R. W. 1977. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. Ecology 58:1199–1217.

    Google Scholar 

  • Vouglitois, J. J., K. W. Able, R. J. Kurtz and K. A. Tighe. 1987. Life history and population dynamics of the bay anchovy in New Jersey. Transactions of the American Fisheries Society 116:141–153.

    Article  Google Scholar 

  • Walters, K., E. Jones and L. Etherington. 1996. Experimental studies of predation on metazoans inhabiting Spartina alterniflora stems. Journal of Experimental Marine Biology and Ecology 195:251–265.

    Article  Google Scholar 

  • Weinstein, M. P. 1979 Shallow marsh habitats as primary nurseries for fishes and shellfish, Cape Fear River, North Carolina. Fisheries Bulletin 77:339–357.

    Google Scholar 

  • -1983. Population dynamics of an estuarine dependent fish, Leiostomus xanthurus, along a tidal creek-seagrass meadow coenocline. Canadian Journal of Fisheries and Aquatic Sciences 40:1633–1638.

    Google Scholar 

  • Weinstein, M. P. and H. A. Brooks. 1983. Comparative ecology of nekton residing in a tidal creek and adjacent seagrass meadow community composition and structure. Marine Ecology Progress Series 12:15–28.

    Google Scholar 

  • Weinstein, M. P. and M. F. Walters. 1981. Growth, survival and production in young-of-the-year populations of Leiostomus xanthurus Lacepede residing in tidal creeks. Estuaries 4:185–197.

    Google Scholar 

  • Weinstein, M. P., S. L. Weiss and M. F. Walters. 1980. Multiple determinants of community structure in shallow marsh habitats, Cape Fear River estuary, North Carolina, USA. Marine Biology 58:227–243.

    Article  Google Scholar 

  • Weisberg, S. B. and V. A. Lotrich. 1982. The importance of an infrequently flooded intertidal marsh surface as an energy source for the mummichog Fundulus heteroclitus: an experimental approach. Marine Biology 66:307–310.

    Article  Google Scholar 

  • Weisberg, S. B., R. Whalen and V. A. Lotrich. 1981. Tidal and diurnal influence on food consumption of a salt marsh killifish, Fundulus heteroclitus. Marine Biology 61:243–246.

    Article  Google Scholar 

  • Welsh, B. L. 1975. The role of grass shrimp, Palaemonetes pugio, in a tidal marsh ecosytem. Ecology 56:513–530.

    Google Scholar 

  • Wiegert, R. G. and L. R. Pomeroy. 1981. The salt marsh ecosystem: a synthesis. Pages 219–230 in L. R. Pomeroy and R. G. Wiegert, editors. The Ecology of a salt marsh. Springer-Verlag, New York, New York, USA.

    Google Scholar 

  • Wilson, J. O., I. Valiela and T. Swain. 1985. Sources and concentrations of vascular plant material in sediments of Buzzards Bay, Massachusetts, USA. Marine Biology 90:12–137.

    Article  Google Scholar 

  • Wilson, K. A., K. W. Able and K. L. Heck, Jr. 1990. Predation rates on juvenile blue crabs in estuarine nursery habitats: evidence for the importance of macroalgae (Ulva lactuca). Marine Ecology Progress Series 58:243–251.

    Google Scholar 

  • Wiltse, W. I., K. H. Foreman, J. M. Teal and I. Valiela. 1984. Effects of predators and food resources on the macrobenthos of salt marsh creeks. Journal of Marine Research 42:923–942.

    Article  Google Scholar 

  • Yáñez-Arancibia, A., editor. 1985. Fish community ecology in estuaries and coastal lagoons: towards an ecosystem integration. DR (R) UNAM Press, Mexico City, Mexico.

    Google Scholar 

  • Zagursky, G. and R. J. Feller. 1985. Macrophyte detritus in the winter diet of the estuarine mysid, Neomysis americana. Estuaries 8:355–362.

    Google Scholar 

  • Zijlstra, J. J. 1988. Fish migration between coastal and offshore areas. Pages 257–272 in B. O. Jansson, editor. Coastal-offshore ecosystem interactions. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Zimmerman, R. J., T. J. Minello and G. Zamora, Jr. 1984. Selection of vegetated habitat by brown shrimp, Penaeus aztecus, in a Galveston Bay salt marsh. Fishery Bulletin, US 82:325–336.

    Google Scholar 

  • Zimmerman, R. J., T. J. Minello, M. C. Castiglione and D. L. Smith. 1990. Utilization of marsh and associated habitats along a salinity gradient in Galveston Bay. NOAA Technical Memorandum NMFS-SEFC-250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Deegan, L.A., Hughes, J.E., Rountree, R.A. (2002). Salt Marsh Ecosystem Support of Marine Transient Species. In: Weinstein, M.P., Kreeger, D.A. (eds) Concepts and Controversies in Tidal Marsh Ecology. Springer, Dordrecht. https://doi.org/10.1007/0-306-47534-0_16

Download citation

  • DOI: https://doi.org/10.1007/0-306-47534-0_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6019-3

  • Online ISBN: 978-0-306-47534-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics