Skip to main content

De Novo Design and Discovery of Cyclic HIV Protease Inhibitors Capable of Displacing the Active-Site Structural Water Molecule

  • Chapter
Integration of Pharmaceutical Discovery and Development

Conclusion

Combining the Caco-2 cell assay, dog pharmacokinetic assessment on selected compounds, antiviral testing against wild-type and mutant variants, and antiviral testing in the presence of human plasma proteins, we can define the overall quality of a given compound. We can then select compounds for further preclinical evaluation.

Using this refined strategy we have been able to identify unsymmetrical analogues that have good potency, resistance profiles, and physicochemical properties, while maintaining excellent oral pharmacokinetics. The true test of our strategy and our assays’ predictive power lies in phase I clinical trials.

We believe that many other opportunities are available (in the area of cyclic HIV-PR inhibitors capable of displacing the structural water) to find structurally different drug candidates with superior potency, mutation profiles, and pharmacokinetics. This area includes cyclic sulfamides, cyclic thioureas, cyclic sulfones, and azacyclic ureas. Extensive analogue SAR studies in these areas await further work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appelt, K., 1993, Crystal structures of HIV-1 protease-inhibitor complexes, Perspect. Drug Discovery Des. 1:23–48.

    Article  CAS  Google Scholar 

  • Artursson, P., and Karlsson, J., 1991, Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells, Biochem. Biophys. Res. Commun. 178:880–885.

    Google Scholar 

  • Baker, W. R., and Condon, S. L., 1993, Dipeptide isosteres. 1. Synthesis of dihydroxyethylene dipeptide isosteres via dia addition of alkyllithium reagents to N,N-dimethylhydrazones. Preparation of renin and HIV-1 protease inhibitor transition-state mimics, J. Org. Chem. 58:3277.

    Article  CAS  Google Scholar 

  • Bryant, M, Getman, D., Smidt, M., Marr, J., Clare, M., Dillard, R., Lansky, D., DeCrecenzo, G., Heintz, R., Houseman, K., Reed, K., Stoszenbach, J., Talley, J., Vazquez, M., and Mueller, R., 1995, SC-52151, a novel inhibitor of the human immunodeficiency virus protease, Antimicrob. Agents Chemother. 39:2229–2234.

    CAS  PubMed  Google Scholar 

  • Chadwick, V. S., Phillips, S. F., and Hofmann, A. F. 1977, Measurements of intestinal permeability using low molecular weight polyethylene glycols (PEG 400), Gastroenterology 73:247–251.

    CAS  PubMed  Google Scholar 

  • Chiba, M., Hensleigh, M., Nishime, J. A., Balani, S. K., and Lin, J. H., 1996, Role of cytochrome P450 3A4 in human metabolism of MK-639, a potent human immunodeficiency virus protease inhibitor, Drug Metab. Dispos. 24:307–314.

    CAS  PubMed  Google Scholar 

  • Christ, D. D., Meek, J. L,, Farmer, A. R., and Larsen, B. S., 1993, Oxidative metabolism of the novel HIV protease inhibitor DMP 323 by rat, dog and human systems, ISSX Proc. 4:230.

    Google Scholar 

  • Coffin, J. M., 1995, HIV population dynamics in vivo: Implications for genetic variation, pathogenesis, and therapy, Science 267:483–489.

    CAS  PubMed  Google Scholar 

  • Condra J. H., Schleif, W. A., Blahy, O. M., Gabryelski, L. J., Graham, D. J., Quintero, J. C., Rhodes, A., Robbins, H. L., Roth, E., Shivaprakash, M., Titus, D., Yang, T., Teppler, H., Squires, K. E., Deutsch, P. J., and Emini, E. A., 1995, in vivo emergence of HIV-1 variants resistant to multiple protease inhibitors, Nature 374:569–571.

    Article  CAS  PubMed  Google Scholar 

  • Conradi, R. A., Hilgers, A. R., Ho, N. F. H., and Burton, P. S., 1991, The influence of peptide structure on transport across Caco-2 cells, Pharm. Res. 8:1453.

    Article  CAS  PubMed  Google Scholar 

  • Cram, D. J., 1986, Preorganization—From solvents to spherands, Angew. Chem. Int. Ed. Engl. 25:1039–1057.

    Article  Google Scholar 

  • Cram, D. J., 1988, The design of molecular hosts, guests and their complexes, Science 240:760–767.

    CAS  PubMed  Google Scholar 

  • Cram, D. J., and Lam, P. Y. S., 1986, Host-guest complexation 37. Synthesis and binding properties of a transacylase partial mimic with imidazole and benzyl alcohol in place, Tetrahedron 42:1607.

    Article  CAS  Google Scholar 

  • Cram, D. J., Dicker, I. B., Lauer, M., Knobler, C. B., and Trueblood, K. N., 1984, Host-guest complexation 32. Spherands composed of cyclic urea and anisyl units, J. Am. Chem. Soc. 106:7150.

    CAS  Google Scholar 

  • Danner, S. A., Carr, A., Leonard, J. M., Lehman, L. M., Gudiol, F., Gonzales, J., Raventos, A., Rubio, R., Bouza, E., Pintado, V, Aguado, A. G., de Lomas, J. G., Delgado, R., Borcees, J. C. C., Hsu, A., Valdes, J. M., Boucher, C. A. B., and Cooper, D. A., 1995, A short term study of the safety, pharmacokinetics, and efficacy of Ritonavir, an inhibitor of HIV-1 protease, N. Engl. J. Med. 333:1528–1533.

    Article  CAS  PubMed  Google Scholar 

  • Darke, P. L., and Huff, J. R., 1995, HIV protease as an inhibitor target for the treatment of AIDS, Adv. Pharmacol. 25:399–454.

    Google Scholar 

  • De Clercq, E., 1995, Toward improved anti-HIV chemotherapy: Therapeutic strategies for intervention with HIV infections, J. Med Chem. 38:2491–2517.

    PubMed  Google Scholar 

  • De Lucca, G. V, Erickson-Viitanen, S., and Lam, P. Y. S., 1997, Cyclic HIV protease inhibitors capable of displacing the active-site structural water molecule. Drug Discovery Today 2:6–18.

    Google Scholar 

  • De Lucca, G. V., Kim, U. T., Liang, J., Cordova, B., Klabe, R. M., Garber, S., Bacheler, L. T., Lam, G. N., Wright, M. R., Logue, K. A., Erickson-Viitanen, S., Ko, S. S., and Trainor, G. L., 1998, Nonsymmetric P2/P2 cyclic urea HIV protease inhibitors. Structure-Activity relationship, bioavailability, and resistance profile of monoindazole-substituted P2 analogs, J. Med. Chem. 41:2411–2423.

    PubMed  Google Scholar 

  • Dunitz, J. D., 1994, The entropic cost of bound water in crystals and biomolecules, Science 264:670.

    CAS  Google Scholar 

  • Erickson, J., and Kempf, D., 1994, Structure-based design of symmetric inhibitors of HIV-1 protease, Arch Virol. Suppl. 9:19–29.

    CAS  PubMed  Google Scholar 

  • Erickson, J., Neidhart, D. J., VanDrie, J., Kempf, D. J., Wang, X. C., Norbeck, D. W., Planner, J. J., Rittenhouse, J. W., Turon, M., Wideburg, N. E., Kohlbrenner, W. E., Simmer, R., Helfrich, R., Paul, D. A., and Knigge, M. F., 1990, Design, activity, and 2.8 Ă… crystal structure of a C2 symmetric inhibitor complexed to HIV-1 protease, Science 249:527–532.

    CAS  PubMed  Google Scholar 

  • Freudenberger, J. H., Konradi, A. W., and Pedersen, S. F., 1989, Intermolecular pinacol cross coupling of electronically similar aldehydes. An efficient and synthesis of 1,2-diols employing a practical vanadium(II) reagent, J. Am. Chem. Soc. 111:8014–8016.

    Article  CAS  Google Scholar 

  • Grzesiek, S., Bax, A., Nicholson, L. K., Yamazaki, T., Wingfield, P., Stahl, S. J., Eyermann, C. J., Torchia, D. A., Hodge, C. N., Lam, P. Y. S., Jadhav, P. K., and Chang, C.-H., 1994, NMR evidence for the displacement of a conserved interior water molecule in HIV protease by a non-peptide cyclic urea-based inhibitor, J. Am. Chem. Soc. 116:1581–1582.

    CAS  Google Scholar 

  • Han, Q., Chang, C. H., Li, R., Ru, Y., Jadhav, P. K., and Lam, P. Y. S., 1998 Cyclic HIV protease inhibitors: Design and synthesis of orally bioavailable pyrazole P2/P2 cyclic ureas with improved potency. J. Med. Chem. 41:2019–2028.

    CAS  PubMed  Google Scholar 

  • Hidalgo, I. J., Raub, T. J., and Borchardt, R. T., 1989, Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability, Gastroenterology 96:736–749.

    CAS  PubMed  Google Scholar 

  • Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., and Markowitz, M., 1995, Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature 373:123–126.

    Article  CAS  PubMed  Google Scholar 

  • Hodge, C. N., Aldrich, P. E., Bacheler, L. T., Chang, C.-H., Eyermann, C. J., Garber, S., Grubb, M. F., Jackson, D. A., Jadhav, P. K., Korant, B., Lam, P. Y. S., Maurin, M. B., Meek, J. L., Otto, M. J., Rayner, M. M., Reid, C., Sharpe, T. R., Shum, L., Winslow, D. L., and Erickson-Viitanen, S., 1996, Improved cyclic urea inhibitors of the HIV-1 protease: Synthesis, potency, resistance profile, human pharmacokinetics and X-ray crystal structure of DMP 450, Chem. Biol. 3:301–314.

    Article  CAS  PubMed  Google Scholar 

  • Hodge, C. N., Lam, P. Y. S., Eyermann, C. J., Jadhav, P. K., Ru, Y., Fernandez, C. H., De Lucca, G. V, Chang, C. H., Kaltenbach III, R. F., Holler, E. E., Woerner, F. J., Daneker, W. K., Emmett, G. C., Calabrese, J. C., and Aldrich, P. E., 1998, Calculated and experimental low-energy conformations of cyclic urea HIV Protease Inhibitors, J. Am. Chem. Soc. 120:4570–4581.

    Article  CAS  Google Scholar 

  • Jacobsen, H., Yasargil, K., Winslow, D. L., Craig, J. C., Krohn, A., Duncan, I. B., and Mous, J., 1995, Characterization of human immunodeficiency virus type 1 mutants with decreased sensitivity to proteinase inhibitor Ro 31–8959, Virology 206:527–534.

    Article  CAS  PubMed  Google Scholar 

  • Jadhav, P. K., and Woerner, F. J., 1992, Synthesis of C2-symmetric HIV-1 protease inhibitors from Dmannitol, Bioorg. Med. Chem. Lett. 2:353–356.

    Article  CAS  Google Scholar 

  • Jadhav, P. K., McGee, L. R., Shenvi, A., and Hodge, C. N., 1994, l,4-Diamino-2,3-dihydroxybutanes, U.S. Patent 5,294,720.

    Google Scholar 

  • Jadhav, P. K., McGee, L. R., Shenvi, A., and Hodge, C. N., 1995, l,4-Diamino-2,3-dihydroxybutanes, U.S. Patent 5,430,155.

    Google Scholar 

  • Jadhav, P. K., Ala, P., Woerner, F. J., Chang, C.-H., Garber, S. S., Anton, E. D., and Bacheler, L. T., 1997, Cyclic urea amides: HIV-1 protease inhibitors with low nanomolar potency against both wild type and protease inhibitor resistant mutants of HIV, J. Med. Chem. 40:181–191.

    Article  CAS  PubMed  Google Scholar 

  • Kang, S. H., and Ryu, D. H., 1996, Double asymmetric iodoamination: Synthesis of C2 symmetric and meso-amino alcohols, Chem. Commun. 1996:355.

    Google Scholar 

  • Katz, R. A., and Skalka, A. M., 1994, The retroviral enzymes, Annu. Rev. Biochem. 63:133–173.

    Article  CAS  PubMed  Google Scholar 

  • Kempf, D. J., 1994, Design of symmetry-based, peptidomimetic inhibitors of human immunodeficiency virus protease. Methods Enzymol. 241:334–354.

    CAS  PubMed  Google Scholar 

  • Kempf, D. J., and Sham, H. L., 1996, HIV protease inhibitors, Curr. Pharm. Des. 2:225–246.

    CAS  Google Scholar 

  • Kempf, D. J., Norbeck, D. W., Codacovi, L. M., Wang, X. C., Kohlbrenner, W. E., Wideburg, N. E., Paul, D. A., Knigge, M. F., Vasavanonda, S., Craig-Kennard, A., Saldivar, A., Rosenbrook, W., Jr., Clement, J. J., Plattner, J. J., and Erickson, J., 1990, Structure-based, C2 symmetric inhibitors of HIV protease, J. Med. Chem. 33:2687–2689.

    CAS  PubMed  Google Scholar 

  • Kempf, D. J., Codacovi, L. M., Wang, X. C., Kohlbrenner, W. E., Wideburg, N. E., Saldivar, A., Vasavanonda, S., Marsh, K. C., Bryant, P., Sham, H. L., Green, B. G., Betebenner, D. A., Erickson, J., and Norbeck, D. W., 1993, Symmetry-based inhibitors of HIV protease. Structure-activity studies of acylated 2,4-diamino-l,5-diphenyl-3-hydroxypentane and 2,5-diamino-l,6-diphenylhexane-3,4-diol, J. Med. Chem. 36:320.

    Article  CAS  PubMed  Google Scholar 

  • Kempf, D. J., Marsh, K. C., Denissen, J., McDonald, E., Vasavanonda, S., Flentge, C., Green, B. G., Fino, L., Park, C., Kong, X., Wideburg, N. E., Saldivar, A., Ruiz, L., Kati, W. M., Sham, H. L., Robins, T., Stewart, K. D., Plattner, J. J., Leonard, J., and Norbeck, D., 1995, ABT-538 is a potent inhibitor of human immunodeficiency virus protease with high oral bioavailability in humans, Proc. Natl. Acad. Sci. USA 92:2484–2488.

    CAS  PubMed  Google Scholar 

  • Kitchen, V. S., Skinner, C., Ariyoshi, K., Lane, E. A., Duncan, I. B., Burckhardt, J., Burger, H. U., Bragman, K., Pinching, A. J., and Weber, J. N., 1995, Safety and activity of Saquinavir in HIV infection, Lancet 345:952–955.

    CAS  PubMed  Google Scholar 

  • Kohl, N. E., Emini, E. A., Schleif, W. A., Davis, L. J., Heimbach, J. C., Dixon, R. A. F., Scolnick, E. M., and Sigal, I. S., 1988, Active human immunodeficiency virus protease is required for viral infectivity, Proc. Natl. Acad. Sci. USA 85:4686–4690.

    CAS  PubMed  Google Scholar 

  • Kumar, G. N., Rodrigues, D., Buko, A. M., and Denissen, J. F., 1996, Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor Ritonavir (ABT-538) in human liver microsomes, J. Pharmacol. Exp. Ther. 277:412–431.

    Google Scholar 

  • Lam, P. Y. S., Jadhav, P. K., Eyermann, C. J., Hodge, C. H., Ru, Y., Bacheler, L. T., Meek, J. L., Otto, M. J., Rayner, M. M., Wong, Y. N., Chang, C.-H., Weber, P. C., Jackson, D. A., Sharpe, T. R., and Erickson-Viitanen, S., 1994, Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 263:380–384.

    CAS  PubMed  Google Scholar 

  • Lam, P. Y. S., Ru, Y, Jadhav, P. K., Aldrich, P. E., De Lucca, G. V, Eyermann, C. J., Chang, C.-H., Emmett, G., Holler, E. R., Daneker, W. F., Li, L., Confalone, P. N., McHugh, R. J., Han, Q., Li, R., Markwalder, J. A., Seitz, S. P., Sharpe, T. R., Bacheler, L. T., Rayner, M. M., Klabe, R. M., Shum, L., Winslow, D. L., Kornhauser, D. M., Jackson, D. A., Erickson-Viitanen, S., and Hodge, C. N., 1996, Cyclic HIV protease inhibitors: Synthesis, conformational analysis, P2/P2′ structure-activity relationship, and molecular recognition of cyclic ureas, J. Med. Chem. 39:3514.

    Article  CAS  PubMed  Google Scholar 

  • Markowitz, M. M., Mo, H., Kempf, D. J., Norbeck, D. W., Bhat, T. N., Erickson, J. W., and Ho, D. D., 1995, Selection and analysis of human immunodeficiency virus type 1 variants with increased resistance to ABT-538, a novel protease inhibitor, J. Virol. 69:701–706.

    CAS  PubMed  Google Scholar 

  • Martin, Y. C., 1992, 3D database searching in drug design, J. Med. Chem. 35:2145–2154.

    CAS  PubMed  Google Scholar 

  • Miller, M., Jaskolski, M., Rao, J. K. M., Leis, J., and Wlodawer, A., 1989a, Crystal structure of a retroviral protease proves relationship to aspartic protease family, Nature 337:576–579.

    CAS  PubMed  Google Scholar 

  • Miller, M., Schneider, J., Sathyanarayana, B. K., Toth, M. V, Marshall, G. R., Clawson, L., Selk, L., Kent, S. B. H., and Wlodawer, A., 1989b, Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 Ă… resolution. Science 246:1149–1152.

    CAS  PubMed  Google Scholar 

  • Nugiel, D. A., Jacobs, K., Worley, T., Patel, M., Kaltenbach, R. F., III, Meyer, D. T., Jadhav, P. K., De Lucca, G. V, Smyser, T. S., Klabe, R. M., Bacheler, L. T, Rayner, M. M., and Seitz, S. P., 1996, Preparation and structure-activity relationship of novel P1/P1′ubstituted cyclic urea-based human immunodeficiency virus type-1 protease inhibitors, J. Med. Chem. 39:2156–2169.

    Article  CAS  PubMed  Google Scholar 

  • Peng, C., Ho, B. K., Chang, T. W., Chang, N. T, 1989, Role of human immunodeficiency virus type 1-specific protease in core protein maturation and viral infectivity, J. Virol. 63:2550–2556.

    CAS  PubMed  Google Scholar 

  • Pierce, M. E., Harris, G. D., Islam, Q., Radesca, L. A., Storace, L., Waltermire, R. E., Wat, E., Jadhav, P. K., and Emmett, G. C., 1996, synthesis of HIV-1 protease inhibitor, DMP 323, J. Org. Chem. 61:444.

    Article  CAS  PubMed  Google Scholar 

  • Pollard, R. B., 1994, Use of proteinase inhibitors in clinical practice, Pharmacothempy 14:21S–29S.

    CAS  Google Scholar 

  • Ribadeneira, M. D., Aungst, B. J., Eyermann, C. J., and Huang, S.-M., 1996, Effects of structural modilications on the intestinal permeability of angiotensin II receptor antagonists and the correlation of in vitro, in situ and in vivo absorption, Pharm. Res. 13:227.

    Article  CAS  PubMed  Google Scholar 

  • Rich, D. H., 1993, Effect of hydrophobic collapse on enzyme-inhibitor interaction for the design of peptidal mimetics, in: Perspectives in Medical Chemistry (B. Testa, E. Kyburz, W. Fuhrer, and R. Giger, eds.) pp. 15–25, CH, New York.

    Google Scholar 

  • Ridky, T., and Leis, J., 1995, Development of drug resistance to HIV-1 protease inhibitors, J. Biol. Chem. 270:29621–29623.

    CAS  PubMed  Google Scholar 

  • Ringe, D., 1994, X-Ray Structures of retroviral proteases and their inhibitor-bound complexes, Methods Enzymol. 241:157–177.

    CAS  PubMed  Google Scholar 

  • Rodgers, J. D., Johnson, B. L., Wang, H., Greenburg, R. A., Erickson-Viitanen, S., Klabe, R. M., Cordova, B. C., Rayner, M. M., Lam, G. N., and Chang, C.-H., 1996, Potent cyclic urea HIV protease inhibitors with benzofused heterocycles as P2/P2’ I groups, Bioorg. Med. Chem. Lett. 6:2919–2924.

    Article  CAS  Google Scholar 

  • Rossano, L. T., Lo, Y. S., Anzalone, L., Lee, Y.-C., Meloni, D. J., Moore, J. R., Gale, T. M., and Arnett, J. F., 1995, A practical synthesis of nonpeptide cyclic ureas as potent HIV protease inhibitors, Tetrahedron Lett. 36:4967.

    CAS  Google Scholar 

  • Swain, A. L., Miller, M. M., Green, J., Rich, D. H., Schneider, J., Kent, S. B. H., and Wlodawer, A., 1990, X-ray crystallographic structure of a complex between a synthetic protease of human immunodeficiency virus 1 and a substrate-based hydroxyethylamine inhibitor, Proc. Natl. Acad. Sci. USA 87:8805–8809.

    CAS  PubMed  Google Scholar 

  • Vacca, J. P., 1994, Design of tight-binding human immunodeficiency virus type 1 protease inhibitors, Methodx Enzymol. 241:311–334.

    CAS  Google Scholar 

  • Vacca, J. P., Dorsey, B. D., Schleif, W. A., Levin, R. B., McDaniel, S. L., Drake, P. L., Zugay, J., Quintero, J. C., Blahy, O. M., Roth, E., Sardana, V. V, Schlabach, A. J., Graham, P. I., Condra, J. H., Gotlib, L., Holloway, M. K., Lin, J., Chen, I.-W., Vastag, K., Ostovic, D., Anderson, P. S., Emini, E. A., and Huff, J. R., 1994, L-735,524: An orally bioavailable human immunodeficiency virus type 1 protease inhibitor, Proc. Natl. Acad. Sci. USA 91:4096–4100.

    CAS  PubMed  Google Scholar 

  • Vella, S., 1994, HIV therapy advances. Update on a proteinase inhibitor, AIDS 8(Suppl 3):25–29.

    Google Scholar 

  • Weber, P. C., Ohlendorf, D. H., Wendoloski, J. J., and Salemme, F. R., 1989, Structural origins of high-affinity biotin binding to streptavidin, Science 243:85.

    CAS  PubMed  Google Scholar 

  • Wei, X., Ghosh, S. K., Taylor, M. E., Johnson, V. A., Emini, E. A., Deutsch, P., Lifson, J. D., Bonhoeffer, S., Nowak, M. A., Hahn, B. H., Saag, M. S., and Shaw, G. M., 1995, Viral dynamics in human immunodeficiency virus type I infection, Nature 373:117–122.

    Article  CAS  PubMed  Google Scholar 

  • Wilkerson, W. W., Akamike, E., Cheatham, W. W., Hollis, A. Y, Collins, D., DeLucca, I., Lam, P. Y. S., and Ru, Y., 1996, HIV protease inhibitory bis-benzamide cyclic ureas: A quantitative struc-tureactivity relationship analysis, J. Med. Chem. 39:4299–4312.

    Article  CAS  PubMed  Google Scholar 

  • Wlodawer, A., 1994, Rational drug design: The proteinase inhibitors, Pharmacotherapy 14:9S–20S.

    CAS  PubMed  Google Scholar 

  • Wlodawer, A., and Erickson, J. W., 1993, Structure-based inhibitors of HIV-1 protease, Annu. Rev. Biochem. 62:543–585.

    Article  CAS  PubMed  Google Scholar 

  • Wlodawer, A., Miller, M., Jaskolski, M., Sathyanarayana, B. K., Baldwin, E., Weber, I. T, Selk, L. M., Clawson, L., Schneider, J., and Kent, S. B. H., 1989, Conserved folding in retroviral proteases: Crystal structure of a synthetic HIV-1 protease, Science 245:616–621.

    CAS  PubMed  Google Scholar 

  • Wong, N. Y., Burcham, D. L., Saxton, P. L., Erickson-Viitanen, S., Grubb, M. F., Quon, C. Y., and Huang, S.-M., 1994, A pharmacokinetic evaluation of HIV protease inhibitors, cyclic ureas, in rats and dogs, Biopharm. Drug Dispos. 15:535–544.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

De Lucca, G.V., Jadhav, P.K., Waltermire, R.E., Aungst, B.J., Erickson-Viitanen, S., Lam, P.Y.S. (2002). De Novo Design and Discovery of Cyclic HIV Protease Inhibitors Capable of Displacing the Active-Site Structural Water Molecule. In: Borchardt, R.T., Freidinger, R.M., Sawyer, T.K., Smith, P.L. (eds) Integration of Pharmaceutical Discovery and Development. Pharmaceutical Biotechnology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/0-306-47384-4_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-47384-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45743-2

  • Online ISBN: 978-0-306-47384-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics