Skip to main content

Energy Efficient Protocols for Wireless Systems

  • Chapter
Wireless Multimedia Network Technologies

Abstract

This paper summarizes recent advances in energy efficient and low power design of networking protocols. We focus on the MAC (Medium Access Control) and application layers of the protocol stack. Of the five MAC protocols studied, EC-MAC has the best energy efficiency. EC-MAC also offers the best scalability with respect to the number of mobile terminals being serviced, as its energy consumption remains bounded. Power conservation techniques discussed for processing multimedia information at the application layer include transferring majority of the processing out of the terminal and into the network, tolerably deteriorating the video quality to lower data rates, and selectively discarding video frames.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, P., Chen, J.-C., Kishore, S., Ramanathan, P., and Sivalingam, K. M. (1998). Battery power sensitive video processing in wireless networks. In Proc. IEEE PIMRC’ 98, Boston, MA.

    Google Scholar 

  • Caceres, R. and Iftode, L. (1995). Improving the performance of reliable transport protocols in mobile computing environments. IEEE Journal on Selected Areas in Communications, 13:850–857.

    Article  Google Scholar 

  • Chandrakasan, A. and Brodersen, R. W. (1995). Low Power Digital CMOS Design. Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  • Chen, J.-C., Sivalingam, K. M., and Agrawal, P. (1999). Performance comparison of battery power consumption in wireless multiple access protocols. ACM/Baltzer Wireless Networks. To Appear.

    Google Scholar 

  • Goodman, D. J., Valenzuela, R. A., Gayliard, K. T., and Ramamurthi, B. (1989). Packet reservation multiple access for local wireless communications. IEEE Transactions on Communications, 37(8):885–890.

    Article  Google Scholar 

  • Gordon, B. M., Tsern, E., and Meng, T. H. (1996). Design of a low power video decompression chip set for portable applications. Journal of VLSI Signal Processing Systems, 13:125–142.

    Google Scholar 

  • IEEE (1997). Std 802.11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications.

    Google Scholar 

  • Karol, M. J., Liu, Z., and Eng, K. Y. (1995). An efficient demand-assignment multiple access protocol for wireless packet (ATM) networks. ACM/Baltzer Wireless Networks, 1(3):267–279.

    Google Scholar 

  • Lettieri, P., Fragouli, C., and Srivastava, M. B. (1997). Low power error control for wireless links. In Proc. of ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom), Budapest, Hungary.

    Google Scholar 

  • Narayanaswamy, S., Seshan, S., Amir, E., Brewer, E., Brodersen, R. W., Burghart, F., Burstein, A., Chang, Y., Fox, A., Gilbert, J. M., Han, R., Katz, R. H., Long, A. C., Messerschmitt, D. G., and Rabaey, J. M. (1996). A low-power, lightweight unit to provide ubiquitous information access applications and network support for Infopad. IEEE Personal Communications, pages 4–17.

    Google Scholar 

  • Raychaudhuri, D. and Wilson, N. D. (1994). ATM-based transport architecture for multi-services wireless personal communication networks. IEEE Journal on Selected Areas in Communications, 12(8):1401–1414.

    Article  Google Scholar 

  • Sivalingam, K. M., Chen, J.-C., Agrawal, P., and Srivastava, M. B. (1999). Design and analysis of low-power access protocols for wireless and mobile ATM networks. ACM/Baltzer Mobile Networks and Applications. To Appear.

    Google Scholar 

  • Udani, S. and Smith, J. (1996). Power Management in Mobile Computing (A Survey). http://www.cis.upenn.edu/~udani/papers.html. University of Pennsylvania.

  • Walrand, J. (1991). Communication Networks. Aksen Associates, Inc.

    Google Scholar 

  • Weiser, M. et al. (1994). Scheduling for reduced CPU energy. In Proc. of First USENIX Symposium on Operating Systems Design and Implementation, pages 4–17.

    Google Scholar 

  • Zorzi, M. and Rao, R. R. (1997). Error control and energy consumption in communications for nomadic computing. IEEE Transactions on Computers, 46 (3): 279–289.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rajamani Ganesh Kaveh Pahlavan Zoran Zvonar

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Agramal, P., Chen, JC., Sivalingam, K.M. (2002). Energy Efficient Protocols for Wireless Systems. In: Ganesh, R., Pahlavan, K., Zvonar, Z. (eds) Wireless Multimedia Network Technologies. The International Series in Engineering and Computer Science, vol 524. Springer, Boston, MA. https://doi.org/10.1007/0-306-47330-5_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-47330-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8633-9

  • Online ISBN: 978-0-306-47330-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics