Skip to main content

Laser Diffraction

Sizing from Nanometers to Millimeters

  • Chapter
Particle Characterization: Light Scattering Methods

Part of the book series: Particle Technology Series ((POTS,volume 13))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Witt, W., Röthele, S., Laser Diffraction-Unlimited? Part. Part. Syst. Charact., 1996, 13, 280–286.

    Article  Google Scholar 

  2. Igushi, T., Togawa, Y., Apparatus for Simultaneously Measuring Large and Small Particle Size Distribution, US Patent 5,185,641, 1993.

    Google Scholar 

  3. Xu, R., Improvement in Particle Size Analysis Using Light Scattering, in Particle and Surface Characterization Methods, Eds. Müller, R. H., Mehnert, W., Medpharm Scientific Publishers, Stuttgart, 1997, Chpt.3, pp.27–56.

    Google Scholar 

  4. Bott, S. E., Hart, W. H., Extremely Wide Dynamic Range, High-Resolution Particle Sizing by Light Scattering, in Particle Size Distribution II, Ed. Provder, T., ACS Symp. Series 472, American Chemical Society, Washington D. C., 1991, Chpt.7, pp.106–122.

    Google Scholar 

  5. Bott, S. E., Hart, W. H., Particle Size Analysis Utilizing Polarization Intensity Differential Scattering, US Patent 4,953,978, 1990.

    Google Scholar 

  6. Bott, S. E., Hart, W. H., Particle Size Analysis Utilizing Polarization Intensity Differential Scattering, US Patent 5,104,221, 1992.

    Google Scholar 

  7. Toyoda, M., Laser Diffraction Particle Size Distribution Measurement Instrument: Coulter LS and Its Application to Pigment Particles, The Industrial Coating (Japan), 1998, 151, 30–34.

    CAS  Google Scholar 

  8. Schmitz, B., Bott, S. E., Hart, W. H., Laser Diffraction Particle Sizing Method Using a Monomode Optical Fiber, US Patent 5,610,712, 1997.

    Google Scholar 

  9. Bott, S. E., Hart, W. H., Method and Apparatus for Particle Size Analysis, US Patent 5,056,918,056,918, 1991.

    Google Scholar 

  10. Trainer, M. N., Methods and Apparatus for Determining Small Particle Size Distribution Utilizing Multiple Light Beams, US Patent 5,416,580, 1995.

    Google Scholar 

  11. Conklin, W. B., Olivier, J. P., Strickland, M. L., Capturing Static Light Scattering Data Using a High Resolution Charge-Coupled Device Detector, in Particle Size Distribution III, Ed. Provder, T., ACS Symp. Series 693, American Chemical Society, Washington D. C., 1998, Chpt.2, pp. 14–22.

    Google Scholar 

  12. Szychter, H., Cilas Particle Size Analyzer 1180: How to Measure Coarse and Fine Particles at the Same Time with a Video Camera and a Short Bench, Powder Handling and Processing, 1998, 10, 412–413.

    Google Scholar 

  13. De Boer, G. B. J., de Weerd, C., Thoenes, D., Goossens, H. W. J., Laser Diffraction Spectrometry: Fraunhofer Diffraction Versus Mie Scattering, Part. Charact., 1987, 4, 14–19.

    Google Scholar 

  14. Brown, D. J., Felton, P. G., Direct Measurement of Concentration and Size for Particles of Different Shapes using Laser Light Diffraction, Ghent. Eng. Res. Des., 1985, 63, 125–132.

    CAS  Google Scholar 

  15. Inaba, K., Matsumoto, K., the Measurement of Particle Concentration using a Laser Diffraction Particle Size Analyzer, J. Soc. Powder Technol. Japan, 1997, 34, 490–498.

    Google Scholar 

  16. Baker, J. P., Mott, S. C., Wright, C. A., Method and Apparatus for Dry Particle Analysis, US Patent 5,359,907, 1994.

    Google Scholar 

  17. Leschonski, K., Röthele, S., Menzel, U., A Special Feeder for Diffraction Pattern Analysis of Dry Powders, Part. Charact., 1984, 1, 161–166.

    Google Scholar 

  18. Lehner, D., Kellner, G., Schnablegger, H., Clatter, O., Static Light Scattering on Dense Colloidal Systems: New Instrumentation and Experimental Results, J. Colloid Interface Sci., 1998, 201, 34–47.

    Article  CAS  Google Scholar 

  19. Wang, N., Shen, J., A Study of the Influence of Misalignment on Measuring Results for Laser Particle Analyzers, Part. Part. Syst. Charact., 1998, 3,122–126.

    Google Scholar 

  20. Xu, R., Reference Materials in Particle Measurement, in Liquid and Surface-Borne Particle Measurement Handbook, Eds. Knapp, J. Z., Barber, T. A., Lieberman, A., Marcel Dekker, New York, 1996, Chpt.16, pp.709–720.

    Google Scholar 

  21. ISO 13320-1 Particle Size Analysis-Laser Diffraction Methods. Part I: General Principle, International Organization of Standardization, Genève, 1999.

    Google Scholar 

  22. For example, Duke Scientific, Palo Alto, CA.

    Google Scholar 

  23. Product Specification, Diffraction Reference Reticle, Malvern Instrument, Malvern, 1993.

    Google Scholar 

  24. Cao, J., Watson, D., Diffraction Patterns of Static Particles on a 2-D Surface, Part. Part. Syst. Charact., 1994,11,235–240.

    Article  Google Scholar 

  25. Mühlenweg, H., Hirleman, E. D., Reticles as Standards in Laser Diffraction Spectroscopy, Part. Part. Syst. Charact., 1999, 16, 47–53.

    Google Scholar 

  26. Tikhonov, A. N., Arsenin, V. Y., Solution of Ill-posed Problems, Winston, Washington D.C., 1977.

    Google Scholar 

  27. Chin, J. H., Spliepcevich, C. M, Tribus, M., Particle Size Distribution from Angular Variation of Intensity of Forward-scattering Light, J. Phys. Chem., 1955, 59, 841–844.

    CAS  Google Scholar 

  28. Koo, J. H., Particle Size Analysis Using Integral Transform Techniques on Fraunhofer Diffraction Pattern, D. Sci. Dissertation, George Washington Uni., Washington D. C., 1987.

    Google Scholar 

  29. Shifrin, K. S., Perelman, A. Ya., The Determination of the Spectrum of Particles in Dispersed System from Data on Its Transparency, Opt. Spectrosc. (USSR), 1963, 15, 285–289.

    Google Scholar 

  30. Kouzelis, D., Candel, S. M., Esposito, E., Zikikout, S., Particle Sizing by Laser Light Diffraction: Improvements in Optics and Algorithms, Part. Charact., 1987, 4, 151–156.

    CAS  Google Scholar 

  31. Bayvel, L. P., Knight, J., Roberston, G., Alternative Model-Independent Inversion Programme for Malvern Particle Sizer, Part. Charact., 1987, 4, 49–53.

    CAS  Google Scholar 

  32. Mroczka, J., Method of Moments in Light Scattering Data Inversion in the Particle Size Distribution Function, Optics Comm., 1993, 99, 147–151.

    Article  Google Scholar 

  33. Hirleman, E. D., Optimal Scaling of the Inverse Fraunhofer Diffraction Particle Sizing Problem: the Linear System Produced by Quadrature, Part. Part. Syst. Charact., 1987, 4, 128–133.

    CAS  Google Scholar 

  34. Mühlenweg, H., Weichert, R., Optical Particle Sizer: A New Development with Mathematical Correlation of Spread Measurement Data, Part. Part. Syst. Charact., 1997, 14, 205–210.

    Google Scholar 

  35. Agrawal, Y. C., Pottsmith, H. C., Optimizing the Kernel for Laser Diffraction Particle Sizing, App. Opt., 1993,32,4285–4286.

    CAS  Google Scholar 

  36. Bassini, A., Musazzi, S., Paganini, E., Perini, U. U., Ferri, F., Giglio, M., Optical Particle Sizer Based on the Chahine Inversion Scheme, Opt. Eng., 1992, 31,1112–1117.

    Google Scholar 

  37. Phillips, B. L., A Technique for the Numerical Solution of Certain Integral Equations of the First Kind, J. Assoc. Comput. Mach., 1962, 9, 84–97.

    Google Scholar 

  38. Twomey, S., On the Numerical Solution of Fredholm Integral Equations of the First Kind by the Inversion of Linear System Produced by Quadrature, J. Assoc. Comput. Mach., 1963, 10, 97–101.

    Google Scholar 

  39. Tarantola, A., Inverse Problem Theory, Elsevier, Amsterdam, 1987.

    Google Scholar 

  40. Heuer, M., Leschonski, K., Results Obtained with a New Instrument for the Measurement of Particle Size Distributions from Diffraction Patterns, Part. Charact., 1985, 2, 7–13.

    CAS  Google Scholar 

  41. Boxman, A., Merkus, H. G., Verheijen, J. T., Scarlett, B., Deconvolution of Light-Scattering Pattern by Observing Intensity Fluctuations, App. Opt., 1991, 30, 4818–4823.

    Google Scholar 

  42. Ma, Z., Merkus, H. G., de Smet, J. G. A. E., Verheijen, P. J. T., Scarlett, B., Improving the Sensitivity of Forward Light Scattering Technique to Large Particles, Part. Part. Syst. Charact., 1999, 16,71–76.

    Article  CAS  Google Scholar 

  43. Finsy, R., Deriemaeker, L., Gelade, E., Joosten, J., Inversion of StaticLight Scattering Measurements for Particle Size Distribution, J. Colloid Interface Sci., 1992, 153, 337–354.

    Article  CAS  Google Scholar 

  44. Tüzün, U., Farhadpour, F. A., Dynamic Particle Size Analysis with Light Scattering Technique, Part. Charact., 1986, 3, 151–157.

    Google Scholar 

  45. Hammond, D. C., Deconvolution Technique for Line-of-Sight Optical Scattering Measurements in Axisymmetric Sprays, Appl. Opt., 1981, 20, 493–499.

    Google Scholar 

  46. Yule, A. J., Ahseng, C., Felton, P. G., Ungut, A., Chigier, N. A., A Laser Tomographic Investigation of Liquid Fuel Sprays, Proc. 18 th Symp. Combustion, 1981, pp. 1501–1510.

    Google Scholar 

  47. Li. X., Renksizbulut, M., Further Development and Application of a Tomographical Data Processing Method for Laser Diffraction Measurements in Sprays, Part. Part. Syst. Charact., 1999, 16, 212–219.

    CAS  Google Scholar 

  48. Handbook of Chemistry and Physics, 75th Ed., CRC Press, Boca Raton, 1995.

    Google Scholar 

  49. Handbook of Optical Constants of Solids Ed. Palik, E. D., Academic Press, New York, 1997.

    Google Scholar 

  50. Fanderlik, I., Optical Properties of Glass, Elsevier, New York, 1983.

    Google Scholar 

  51. Pigment Handbook, Ed. Lewis, P. A., John Wiley & Sons, New York, 1988.

    Google Scholar 

  52. Polymer Handbook, Eds. Brandrup, J., Immergut, E. H., Grulke, E. A. 4th Ed., Wiley-Interscience, New York, 1999.

    Google Scholar 

  53. Schnablegger, H., Glatter, O., Simultaneous Determination of Size Distribution and Refractive Index of Colloidal Particle from Static Light Scattering Experiments, J. Colloid Interface Sci., 1993, 8, 228–242.

    Google Scholar 

  54. Hitchen, C. J., The Effect of Suspension Medium Refractive Index on the Particle Size Analysis of Quartz by Laser Diffraction, Part. Part. Syst. Charact., 1992, 9, 171–175.

    Article  CAS  Google Scholar 

  55. Hirleman, E. D., Modeling of Multiple Scattering Effects in Fraunhofer Diffraction Particle Size Analysis, Part. Part. Syst. Charact., 1988, 5, 57–65.

    CAS  Google Scholar 

  56. Hirleman, E. D., General Solution to the Inverse Near-forward-scattering Particle-sizing Problem in Multiple-scattering Environment: Theory, App. Opt., 1991, 30, 4832–4838.

    Google Scholar 

  57. Hirleman, E. D., A General Solution to Fraunhofer Diffraction Particle Sizing in Multiple Scattering Environment: Theory, in Proc. 2 nd Int. Congress Opt. Part. Sizing, Tempe, 1990.

    Google Scholar 

  58. Wedd, M. W., Holve, D. J., On-line Control of Powder Milling Using Laser Diffraction, in Proc. World Congress Part. Technol. 3, Brighton, 1998, (IChemE), Paper No.45.

    Google Scholar 

  59. Ward-Smith, S., Jones, R., Wedd, M., Determination of Continuous Particle Size Distribution of Concentrated Sprays, Am. Lab., 1999, January, pp. 17–21.

    Google Scholar 

  60. Harvill, T. L., Hoog, J. H., Holve, D. J., In-process Particle Size Distribution Measurements and Control, Part. Part. Syst. Charact., 1995, 12, 309–313.

    Article  CAS  Google Scholar 

  61. Cornillault, J., Particle Size Analyzer, Appl. Opt., 1972, 11, 262–268.

    Google Scholar 

  62. Bürkholz, A., Polke, R., Laser Diffraction Spectrometers/Experience in Particle Size Analysis, Part. Charact., 1984, 1, 153–160.

    Google Scholar 

  63. Loizeau, J.-L., Arbouille, D., Santiago, S., Vernet, J.-P., Evaluation of a Wide Range Laser Diffraction Grain Size Analyzer for Use with Sediments, Sedimentology, 1994, 41, 353–361.

    ISI  Google Scholar 

  64. Merkus, H. G., Bischof, O., Drescher, S., Scarlett, B., Precision and Accuracy in Particle Sizing, Round-robin Results from Sedimentation, Laser Diffraction and Electrical Sensing Zone Using BCR 67 and BCR 69, in Prep. 6 th European Symp. Part. Charact., Nürberg, 1995, pp.427–436.

    Google Scholar 

  65. Mühlenweg, H., Hirleman, E. D., Laser Diffraction Spectroscopy: Influence of Particle Shape and a Shape Adaptation Technique, Part. Part. Syst. Charact., 1998, 15, 163–169.

    Google Scholar 

  66. Jones, A. R., Fraunhofer Diffraction by Random Irregular Particles, Part. Part. Syst. Charact., 1987, 4, 123–127.

    Article  CAS  Google Scholar 

  67. Heffels, C. M. G., Verheijen, P. J. T., Heitzmann, D., Scarlett, B., Correction of the Effect of Particle Shape on the Size Distribution Measured with a Laser Diffraction Instrument, Part. Part. Syst. Charact. 1996, 13, 271–279.

    Article  Google Scholar 

  68. Barreiros, F. M., Ferreira, P. J., Figueiredo, M. M. Calculating Shape Factors from Particle Sizing Data, Part. Part. Syst. Charact., 1996, 13, 368–373.

    Article  CAS  Google Scholar 

  69. Michoel, A., De Jaeger, N., Sneyers, R., De Wispelaere, W., Geladé, E., Kern, J., van Amserdam, P., Den Tandt, Y., Houtmeyers, E., van Cotthem, L., Influence of Porosity on the Electrical Sensing Zone and Laser Diffraction Sizing of Silicas. A Collaborative Study, Part. Part. Syst. Charact. 1994, 11, 391–397.

    Article  CAS  Google Scholar 

  70. Hayakawa, O., Nakahira, K., Tsubaki, J., Comparison of Particle Size Analysis and Evaluation of Its Measuring Technique with Fine Ceramics Powders, Part 1, J. Cera. Soc. Japan, 1995, 3, 392–397.

    Google Scholar 

  71. Hayakawa, O., Nakahira, K., Tsubaki, J., Comparison of Particle Size Analysis and Evaluation of Its Measuring Technique with Fine Ceramics Powders, Part 2, J. Cera. Soc. Japan, 1995, 103, 500–505.

    CAS  Google Scholar 

  72. Palmer, A. T., Logiudice, P. J., Cowley, J., Comparison of Sizing Results Obtained with Electrolyte Volume Displacement and Laser Light Scattering Instrumentation, Am. Lab., 1994, November, pp. 15–19.

    Google Scholar 

  73. Flank, W. H., Comparison of ASTM Round-Robin Data on Particle Size Using Three Different Methods, Ind. Eng. Chem. Res., 1987, 26, 1750–1753.

    Article  CAS  Google Scholar 

  74. Bowen, P., Humphy-Baker, R., Herard, C, Particle Size Distribution Measurement of Regular Anisotropic Particles — Cylinders and Platelets, in Proc. World Congress Part. Technol. 3, Brighton, 1998, Paper No.29.

    Google Scholar 

  75. Endoh, S., Kuga, Y., Ohya, H., Ikeda, C., Iwata, H., Shape Estimation of Anisometric Particles Using Sizing Measurement Techniques, Part. Part. Syst. Charact., 1998, 15, 145–149.

    Article  CAS  Google Scholar 

  76. Umhauer, H., Bottlingor, M., Effect of Particle Shape and Structure on the Results of Single-Particle Light Scattering Size Analysis, Appl. Opt., 1991, 30, 4980–4986.

    Article  Google Scholar 

  77. Inaba, K., Matsumoto, K., Effect of Particle Shape on Particle Size Analysis Using the Electric Sensing Zone Method and Laser Diffraction Method, J. Soc. Powder Technol. Japan, 1995, 32, 722–730.

    Google Scholar 

  78. Baudet, G., Bizi, M., Rona, J. P., Estimation of the Average Aspect Ratio of Lamellae-Shaped Particles by Laser Diffractometry, Part. Sci. Tech., 1993, 11, 73–96.

    CAS  Google Scholar 

  79. Hareland, G. A., Evaluation of Flour Particle Size Distribution by Laser Diffraction, Sieve Analysis and Near-infrared Reflectance Spectroscopy, J. Cereal Sci., 1994, 21, 183–190.

    Google Scholar 

  80. Pei, P., Kelly, J., Malghan, S., Dapkunas, S., nalysis of Zirconia Powder for Thermal Spray: Reference Material for Particle Size Distribution Measurement, in Thermal Spray: Practical Solution for Engineering Problem, Ed. Berndt, C. C., ASM International, Newbury, 1996, pp.263–273.

    Google Scholar 

  81. Yang, I, Hideaki, I, Measuring Techniques for Particle Size Distribution, Coating Technology (Japan), 1992, 7, 83–87.

    Google Scholar 

  82. Hubner, T., Will, S., Leipertz, A., Determination of Particle Size Distribution and Particle Density Based on a Combination of Photosedimentation and Laser Diffraction, in Preprints ofPartec 98, 7 th European Symp. Part. Charact., Nümberg, 1998, pp.743–752.

    Google Scholar 

  83. Light Scattering by Irregularly Shaped Particles, Ed. Schuerman, D. W., Plenum Press, New York, 1980.

    Google Scholar 

  84. Al-Chalabi, S. A. M., Jones, A. R., Light Scattering by Irregular Particles in the Rayleigh-Gans-Debye Approximation, J. Phys. D, 1995, 28, 1304–1308.

    Article  CAS  Google Scholar 

  85. Pollack, J. B., Cuzzi, J. N., in Light Scattering by Irregular Shaped Particles, Ed. Schuerman, D.W., Plenum Press, New York, 1980, pp.113–125.

    Google Scholar 

  86. Bushell, G. C., Amal, R., Raper, J. A., The Effect of 1Polydispersity in Primary Particle Size on Measurement of the Fractal Dimension of Aggregates, Part. Part. Syst. Charact., 1998, 15, 3–8.

    Article  CAS  Google Scholar 

  87. Kaye, P., Hirst, E., Wang-Thomas, Z., Neural-network-based Spatial Light-Scattering Instrument for Hazardous Airborne Fiber Detection, App. Opt., 1997, 36, 6149–6156.

    Article  CAS  Google Scholar 

  88. Barthel, H., Sachweh, B., Ebert, F., Measurement of Airborne Mineral Fibres Using a New Differential Light Scattering Device, Meas. Sci. Technol, 1998, 9, 206–216.

    Article  Google Scholar 

  89. List, J., Weichert, R., Detection of Fibers by Light Diffraction, in Preprints of Partec 98, 7 th European Symp. Part. Charact., Nümberg, 1998, pp.705–714.

    Google Scholar 

  90. Dick, W. D., McMurry, P. H., Sachweh, B., Distinguishing Between Spherical and Non-spherical Particles by Measuring the Variability in Azimuthal Light Scattering, Aerosol Sci. Tech., 1995, 23, 373–391.

    Google Scholar 

  91. Heffels, C. M. G., Heitzmann, D., Hirleman, E. D., Scarlett, B., The Use of Azimuthal Intensity Variation in Diffraction Patterns for Particle Shape Characterization, Part. Part. Syst. Charact., 1994, 11, 194–199.

    Article  CAS  Google Scholar 

  92. de Smet, J. G. A. E., Heffels, C. M. G., Szychter, H. S., Merkus, H., Scarlett, B., Measurement of Particle Size and Shape by Forward Light Scattering, in Proc. World Congress Part. Technol. 3, Brighton, 1998, (IChemE), Paper No.48.

    Google Scholar 

  93. Heffels, C. M. G., Polke, R., Rädle, M., Sachweh, B., Schäfer, M., Scholz, N., Control of Particulate Processes by Optical Measurement Techniques, Part. Part. Syst. Charact., 1998, 15, 211–218.

    Article  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Laser Diffraction. In: Scarlett, B. (eds) Particle Characterization: Light Scattering Methods. Particle Technology Series, vol 13. Springer, Dordrecht. https://doi.org/10.1007/0-306-47124-8_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-47124-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6300-2

  • Online ISBN: 978-0-306-47124-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics