Advertisement

Chaos and Irreversibility

Part of the Fundamental Theories of Physics book series (FTPH, volume 57)

Keywords

Phase Space Periodic Orbit Coherent State Chaotic System Symmetry Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New York (1991).Google Scholar
  2. F. Haake, Quantum Signatures of Chaos, Springer, Berlin (1992).Google Scholar
  3. L. E. Reichl, The Transition to Chaos, Springer, New York (1992).Google Scholar
  4. M. Tabor, Chaos and Integrability in Nonlinear Dynamics, Wiley, New York (1989).zbMATHGoogle Scholar
  5. G. M. Zaslavsky, Chaos in Dynamic Systems, Harwood, Langhorne, PA (1985).Google Scholar

Recommended reading An assortment of widely different approaches to quantum chaos can be found in the following articles

  1. I. C. Percival, “Regular and irregular spectra,” J. Phys. B 6 (1973) L229.CrossRefADSGoogle Scholar
  2. M. V. Berry, N. L. Balazs, M. Tabor, and A. Voros, “Quantum maps,” Ann. Phys. (NY) 122 (1979) 26.MathSciNetCrossRefADSGoogle Scholar
  3. M. V. Berry, “Quantizing a classically ergodic system: Sinai’s billiard and the KKR method,” Ann. Phys. (NY) 131 (1981) 163.MathSciNetCrossRefADSGoogle Scholar
  4. P. Pechukas, “Quantum chaos in the irregular spectrum,” Chem. Phys. Lett. 86 (1982) 553.CrossRefADSGoogle Scholar
  5. M. C. Gutzwiller, “The quantization of a classically ergodic system,” Physica D 5 (1982) 183; “Stochastic behavior in quantum scattering,” ibid. 7 (1983) 341.MathSciNetCrossRefADSzbMATHGoogle Scholar
  6. M. Feingold, N. Moiseyev, and A. Peres, “Classical limit of quantum chaos,” Chem. Phys. Lett. 117 (1985) 344.CrossRefADSGoogle Scholar
  7. G. Casati, B. V. Chirikov, I. Guarneri, and D. L. Shepelyansky, “Dynamical stability of quantum ‘chaotic’ motion in a hydrogen atom,” Phys. Rev. Lett. 56 (1986) 2437.CrossRefADSGoogle Scholar
  8. J. Ford, G. Mantica, and G. H. Ristow, “The Arnoľd cat: Failure of the correspondence principle,” Physica D 50 (1991) 493.MathSciNetCrossRefADSzbMATHGoogle Scholar
  9. G. P. Berman, E. N. Bulgakov, and G. M. Zaslavsky, “Quantum chaos of atoms in a resonant cavity,” Chaos 2 (1992) 257.MathSciNetCrossRefADSzbMATHGoogle Scholar
  10. R. Schack and C. M. Caves, “Hypersensitivity to perturbations in the quantum baker’s map,” Phys. Rev. Lett. 71 (1993) 525.CrossRefADSGoogle Scholar

Experimental quantum chaos

  1. J. E. Bayfield, G. Casati, I. Guarneri, and D. W. Sokol, “Localization of classically chaotic diffusion for hydrogen atoms in microwave fields,” Phys. Rev. Lett. 63 (1989) 364.CrossRefADSGoogle Scholar
  2. E. Doron, U. Smilansky, and A. Frenkel, “Experimental demonstration of chaotic scattering of microwaves,” Phys. Rev. Lett. 65 (1990) 3072.CrossRefADSGoogle Scholar
  3. O. Agam, S. Fishman, and R. E. Prange, “Experimental realizations of quantum chaos in dielectric waveguides,” Phys. Rev. A 45 (1992) 6773.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Personalised recommendations