Skip to main content

Abstract

The main goal of this work is to put the last results of the Scalar Field Dark Matter model of the Universe at cosmological and at galactic level in a work together. We present the complete solution to the 95% scalar field cosmological model in which the dark matter is modeled by a scalar field Φ with the scalar potential \( V(\Phi ) = V_o [\cosh (\lambda \sqrt {k_o } \Phi ) - 1] \) and the dark energy is modeled by a scalar field Ψ, endowed with the scalar potential \( \tilde V(\Psi ) = \tilde V_o [\sinh (\alpha \sqrt {k_o } \Psi )]^\beta\). This model has only two free parameters, λ and the equation of state ωψ. The results of the model are: 1) the fine tuning and the cosmic coincidence problems are ameliorated for both dark matter and dark energy and the models agrees with astronomical observations. 2) The model predicts a suppression of the Mass Power Spectrum for small scales having a wave number k>k min,φ, where k min,φ ≃4.5h Mpc −1 for λ≃20.3. This last fact could help to explain the dearth of dwarf galaxies and the smoothness of galaxy core halos. 3) From this, all parameters of the scalar dark matter potential are completely determined. 4) The dark matter consists of an ultra-light particle, whose mass is m φ ≃1.1×10 −23 eV and all the success of the standard cold dark matter model is recovered. 5) If the scale of renormalization of the model is of order of the Planck Mass, then the scalar field Φ can be a reliable model for dark matter in galaxies. 6) The predicted scattering cross section fits the value required for self-interacting dark matter. 7) Studying a spherically symmetric fluctuation of the scalar field Φ in cosmos we show that it could be the halo dark matter in galaxies. 8) The local space-time of the fluctuation of the scalar field Φ contains a three dimensional space-like hypersurface with surplus of angle. 9) We also present a model for the dark matter in the halos of spiral galaxies, we obtain that 10) the effective energy density goes like 1/(r 2 +K 2) and 11) the resulting circular velocity profile of tests particles is in good agreement with the observed one in spiral galaxies. This implies that a scalar field could also be a good candidate as the dark matter of the Universe

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.N. Schramm, in: Nuclear and Particle Astrophysics, ed. J.G. Hirsch and D. Page, Cambridge Contemporary Astrophysics, 1998; X. Shi, D.N. Schramm, and D. Dearborn, Phys. Rev. D 50 (1995) 2414.

    Google Scholar 

  2. P. J.E. Peebles, in: Principles of Physical Cosmology, Princeton University Press, 1993.

    Google Scholar 

  3. M. Persic, P. Salucci, and F. Stel, MNRAS 281 (1996) 27.

    ADS  Google Scholar 

  4. K.G. Begeman, A.H. Broeils, and R.H. Sanders, MNRAS 249 (1991) 523.

    ADS  Google Scholar 

  5. S. Perlmutter et al. Ap. J. 517 (1999) 565; A.G. Riess et al., A. J. 116 (1998) 1009.

    Article  ADS  Google Scholar 

  6. N.A. Bahcall, J.P. Ostriker, S. Perlmutter, and P. J. Steinhardt, Science 284 1481; V. Sahni, A. Starobinsky, Int. J. Mod. Phys. D 9 (2000) 373.

    Google Scholar 

  7. V. Sahni and L. Wang, Phys. Rev. D 62 (2000) 103517.

    Article  ADS  Google Scholar 

  8. F.S. Guzmán, and T. Matos, Class. Quantum Grav. 17 (2000) L9; T. Matos and F. S. Guzmán, Ann. Phys. (Leipzig) 9 (2000) 133; T. Matos, F.S. Guzmán, and D. Núñez, Phys. Rev. D 62 (2000) 061301.

    Article  ADS  MATH  Google Scholar 

  9. T. Matos, F.S. Guzmán, and L. A. Ureña-López, Class. Quantum Grav. 17 (2000) 1707.

    Article  ADS  MATH  Google Scholar 

  10. T. Matos and L.A. Ureña-López, Class. Quantum Grav. 17 (2000) L71.

    Google Scholar 

  11. L.A. Ureña-López and T. Matos, Phys. Rev. D 62 (2000) 081302.

    Article  ADS  Google Scholar 

  12. P. de Bernardis et al., Nature 404 (2000) 955; S. Hanany et al., preprint astro-ph/0005123.

    Article  ADS  Google Scholar 

  13. L.P. Chimento, A.S. Jakubi, Int. J. Mod. Phys. D 5 (1996) 71.

    Article  MathSciNet  ADS  Google Scholar 

  14. Pedro G. Ferreira and Michael Joyce, Phys. Rev. D 58 (1998) 023503.

    Article  ADS  Google Scholar 

  15. M.S. Turner, Phys. Rev. D 28 (1983) 1253; L.H. Ford, Phys. Rev. D 35 (1987) 2955.

    Article  ADS  Google Scholar 

  16. T. Matos and L. A. Ureña-López, Phys. Rev. D in press. preprint astro-ph/0006024.

    Google Scholar 

  17. R.R. Caldwell, R. Dave, and P.J. Steinhardt, Phys. Rev. Lett. 80 (1998) 1582; I. Zlatev, L. Wang, and P.J. Steinhardt, Phys. Rev. Lett. 82 (1999) 896; P.J. Steinhardt, L. Wang, and I. Zlatev, Phys. Rev. D 59 (1999) 123504.

    Article  ADS  Google Scholar 

  18. C.-P. Ma and E. Berthshinger, Ap. J. 455 (1995) 7.

    Article  ADS  Google Scholar 

  19. C.-Pei Ma et al, A. J. 521 (1999) L1.

    Article  ADS  Google Scholar 

  20. P. Brax, J. Martin, and A. Riazuelo, preprint astro-ph/0005428.

    Google Scholar 

  21. U. Seljak and M. Zaldarriaga, Ap. J. 469 (1996) 437.

    Article  ADS  Google Scholar 

  22. M. Kamionkowski and A.R. Liddle, Phys. Rev. Lett. 84 (2000) 4525.

    Article  ADS  Google Scholar 

  23. W. Hu, R. Barkana, and A. Gruzinov, Phys. Rev. Lett. 85 (2000) 1158.

    Article  ADS  Google Scholar 

  24. B.D. Wandelt, R. Dave, G.R. Farrar, P.C. McGuire, D.N. Spergel, and P.J. Steinhardt, preprint astro-ph/0006344.

    Google Scholar 

  25. C. Firmani, E. D’Onghia, G. Chincarini, X. Hernández, and V. Ávila-Reese, preprint astro-ph/0005010; V. Ávila-Reese, C. Firmani, E. D’Onghia, and X. Hernández, preprint astro-ph/0007120.

    Google Scholar 

  26. P. Colín, V. Ávila-Reese, and O. Valenzuela, preprint astro-ph/0004115.

    Google Scholar 

  27. D.N. Spergel and P.J. Steinhardt, Phys. Rev. Lett. 84 (2000) 3760.

    Article  ADS  Google Scholar 

  28. K. Halpern and K. Huang, Phys. Rev. Lett. 74 (1995) 3526; K. Halpern and K. Huang, Phys. Rev. D 53 (1996) 3252.

    Article  ADS  Google Scholar 

  29. V. Branchina, preprint hep-ph/0002013.

    Google Scholar 

  30. K. Halpern, Phys. Rev. D 57 (1998) 6337.

    Article  ADS  Google Scholar 

  31. T. Matos and L.A. Ureña-López, preprint astro-ph/0010226.

    Google Scholar 

  32. M.S. Turner, Phys. Rev. D 28 (1983) 1243; L.H. Ford, Phys. Rev. D 35 (1987) 2955.

    Article  MathSciNet  ADS  Google Scholar 

  33. V.C. Rubin, W.K. Ford, and N. Thonnard, A. J. 238 (1980) 471.

    Article  Google Scholar 

  34. E.J. Copeland, A.R. iddle, L and D. Wands, Phys. Rev. D 57 (1998) 4686.

    Article  ADS  Google Scholar 

  35. T. Barreiro, E. J. Copeland, and N. J. Nunes, Phys. Rev. D 61 (2000) 127301.

    Article  ADS  Google Scholar 

  36. S. Mignemi and D. L. Wiltshire, Class. Quantum Grav. 6 (1989) 987.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. T. Matos, D. Nuñez, F.S. Guzmán, and E. Ramírez, preprint astro-ph/0003105; T. Matos, D. Nuñez, F.S. Guzmán, and E. Ramírez, “Conditions on the Flat Behavior of the Rotational Curves in Galaxies”, to be published.

    Google Scholar 

  38. D.F. Torres, S. Capozziello and G. Lambiase, Phys. Rev. D 62 (2000) 104012.

    Article  ADS  Google Scholar 

  39. T. Matos, L. A. Ureña-López, and F.S. Guzmán, to be published.

    Google Scholar 

  40. E. Seidel and W. Suen, Phys. Rev. Lett. 72 (1994) 2516.

    Article  ADS  Google Scholar 

  41. T. Matos, F.S. Guzmán, and D. Núñez, Phys. Rev. D 62 (2000) 061301(R).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Matos, T., Guzmán, F.S., Ureña-López, L.A., Núñez, D. (2002). Scalar Field Dark Matter. In: Macias, A., Cervantes-Cota, J.L., Lämmerzahl, C. (eds) Exact Solutions and Scalar Fields in Gravity. Springer, Boston, MA. https://doi.org/10.1007/0-306-47115-9_16

Download citation

  • DOI: https://doi.org/10.1007/0-306-47115-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46618-2

  • Online ISBN: 978-0-306-47115-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics