Skip to main content

Long Distance Entangled State Quantum Key Distribution

  • Chapter
Quantum Communication, Computing, and Measurement 3

Abstract

A quantum key distribution system based on photon pairs entangled in energytime and optimized for long distance transmission is presented. It is based on a Franson arrangement for monitoring quantum correlations, and uses a protocol analogous to BB84. Passive state preparation is implemented by polarization multiplexing in the interferometers. We distributed a sifted key of 0.4 Mbits at a raw rate of 134 Hz and with an error rate of 8.6% over a distance of 8.5 kilometers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bennett and G. Brassard, in Proc. of IEEE Inter. Conf. on Computers, Systems and Signal Processing, Bangalore, (IEEE, New York, 1984), p. 175.

    Google Scholar 

  2. P. Townsend, Opt. Fiber Tech. 4, 345 (1998).

    Article  ADS  Google Scholar 

  3. R. Hughes, G. Morgan, and C. Peterson, J. of Mod. Opt. 47, 533 (2000).

    MathSciNet  ADS  Google Scholar 

  4. J.-M. Mérolla, Y. Mazurenko, J.-P. Goedgebuer, and W. Rhodes, Phys. Rev. Lett. 82, 1656(1999).

    Article  ADS  Google Scholar 

  5. G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, J. of Mod. Opt. 47, 517(2000).

    MathSciNet  ADS  Google Scholar 

  6. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett 84, 4737 (2000).

    Article  ADS  Google Scholar 

  7. D. Naik, C. Peterson, A. White, A. Berglund, and P. Kwiat, Phys. Rev. Lett. 84, 4733 (2000).

    Article  ADS  Google Scholar 

  8. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. 84, 4729 (2000).

    Article  ADS  Google Scholar 

  9. B. Huttner, N. Imoto, N. Gisin, and T. Mor, Phys. Rev. A 51, 1863 (1995).

    Article  ADS  Google Scholar 

  10. H. Yuen, Quantum Semiclassic. Opt. 8, 939 (1996).

    Article  ADS  Google Scholar 

  11. G. Brassard, N. Lütkenhaus, T. Mor, and B. Sanders, Phys. Rev. Lett 85, 1330(2000).

    Article  ADS  Google Scholar 

  12. J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989).

    Article  ADS  Google Scholar 

  13. A. Ekert, J. Rarity, P. Tapster, and M. Palma, Phys. Rev. Lett. 69, 1293 (1992).

    Article  ADS  Google Scholar 

  14. G. Ribordy, J.-D. Gautier, H. Zbinden, and N. Gisin, Appl. Opt. 37, 2272 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ribordy, G., Gisin, N., Zbinden, H. (2002). Long Distance Entangled State Quantum Key Distribution. In: Tombesi, P., Hirota, O. (eds) Quantum Communication, Computing, and Measurement 3. Springer, Boston, MA. https://doi.org/10.1007/0-306-47114-0_41

Download citation

  • DOI: https://doi.org/10.1007/0-306-47114-0_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46609-0

  • Online ISBN: 978-0-306-47114-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics