Quantum Probabilistic Subroutines and Problems in Number Theory

  • A. Carlini
  • A. Hosoya


We describe a quantum version of the classical probabilistic algorithms à la Rabin. The quantum probabilistic algorithm is fully unitary and reversible, and can be used as a subroutine in larger quantum computations. As an example, we describe a polynomial time algorithm for counting the number of primes smaller than a given integer.


Quantum algorithms number theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P.W. Shor, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (ed. S. Goldwater, IEEE Computer Society Press, New York, 1994), p. 124.CrossRefGoogle Scholar
  2. [2]
    L.K. Grover, in Proceedings of the 28th Annual Symposium on the Theory of Computing (ACM Press, New York, 1996), p. 212.Google Scholar
  3. [3]
    G. Brassard, P. Hoyer and A. Tapp, Los Alamos e-print quant-ph/9805082; M. Boyer, G. Brassard, P. Hoyer and A. Tapp, in Proceedings of the 4th Workshop on Physics and Computation (ed. T. Toffoli et al., New England Complex Systems Institute, Boston, 1996), p. 36.Google Scholar
  4. [4]
    A. Carlini and A. Hosoya, Phys. Rev. A 62 (2000), 032312.CrossRefADSGoogle Scholar
  5. [5]
    M.O. Rabin, Journ. Num. Th. 12 (1980), 128.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • A. Carlini
    • 1
  • A. Hosoya
    • 1
  1. 1.Department of PhysicsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations