Advertisement

Realising Quantum Computing: Physical Systems and Robustness

  • Andrew M. Steane

Abstract

The physical realisation of a large quantum computer, i.e. one which could perform calculations beyond the capabilities of classical computers, is discussed. It is necessary to consider both the physical mechanisms of the hardware and the noise tolerance of quantum error correction (QEC) methods. Estimates for noise tolerance which involve fewer simplifying assumptions than were previously employed are given, and the scaling of logic gate rate with logic gate precision is discussed. It is found that QEC is fast compared to methods such as adiabatic passage.

Keywords

quantum error correction computer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Cirac and Zoller, 1995]
    Cirac, J. I. and Zoller, P. (1995). Quantum computations with cold trapped ions. Phys. Rev. Lett., 74(20):4091–4094.CrossRefADSGoogle Scholar
  2. [Cirac et al., 1997]
    Cirac, J. I., Zoller, P., Kimble, H. J., and Mabuchi, H. (1997). Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett., 78:3221.CrossRefADSGoogle Scholar
  3. [Imamoglu et al.,1999]
    Imamoglu A., Awschalom, D.D., Burkard, G., Di Vincenzo, D. P., Loss, D., Sherwin, M, and Small, A. (1999). Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett., 83(20):4204–4207.Google Scholar
  4. [Jonathan et al., 2000]
    Jonathan, D., Plenio, M. B., and Knight, P. L. (2000). Fast quantum gates for cold trapped ions. Phys. Rev. A, 62:042307. quantph/0002092.CrossRefADSGoogle Scholar
  5. [Kitaev, 1997]
    Kitaev, A. Y. (1997). Fault tolerant quantum computation with anyons. Preprint:, quant-ph/9707021.Google Scholar
  6. [Knill et al., 2000]
    Knill, E., Laflamme, R., and Viola, L. (2000). Theory of quantum error correction for general noise. Phys. Rev. Lett., 84:2525–2528.CrossRefADSMathSciNetzbMATHGoogle Scholar
  7. [Pellizzari et al., 1995]
    Pellizzari, T., Gardiner, S. A., Cirac, J. I., and Zoller, P. (1995). Decoherence, continuous observation, and quantum computing: a cavity QED model. Phys. Rev. Lett., 75(21):3788–3791.CrossRefADSGoogle Scholar
  8. [Sørensen and Mølmer, 2000]
    Sørensen, A. and Mølmer, K. (2000). Entanglement and quantum computation with ions in thermal motion, quant-ph/0002024.Google Scholar
  9. [Steane, 1999]
    Steane, A. M. (1999). Efficient fault-tolerant quantum computing. Nature, 399:124–126. quant-ph/9809054.CrossRefADSGoogle Scholar
  10. [Steane and Lucas, 2000]
    Steane, A. M. and Lucas, D. M. (2000). Quantum computing with trapped ions, atoms and light. Fortschritte der Physik, 48:839–858.CrossRefADSGoogle Scholar
  11. [Steane et al., 2000]
    Steane, A. M., Roos, C. F., Stevens, D., Mundt, A., Leibfried, D., Schmidt-Kaler, F., and Blatt, R. (2000). Speed of ion trap quantum information processors. Phys. Rev. A, 62:042305.CrossRefADSGoogle Scholar
  12. [van Enk et al., 1997]
    van Enk, S. J., Cirac, J. I., and Zoller, P. (1997). Purifying two-bit quantum gates and joint measurements in cavity QED. Phys. Rev. Lett., 79:5178–5181.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Andrew M. Steane
    • 1
  1. 1.Centre for Quantum Computation, Clarendon LaboratoryUniversity of OxfordOxfordEngland

Personalised recommendations