Skip to main content

Realising Quantum Computing: Physical Systems and Robustness

  • Chapter
Quantum Communication, Computing, and Measurement 3
  • 756 Accesses

Abstract

The physical realisation of a large quantum computer, i.e. one which could perform calculations beyond the capabilities of classical computers, is discussed. It is necessary to consider both the physical mechanisms of the hardware and the noise tolerance of quantum error correction (QEC) methods. Estimates for noise tolerance which involve fewer simplifying assumptions than were previously employed are given, and the scaling of logic gate rate with logic gate precision is discussed. It is found that QEC is fast compared to methods such as adiabatic passage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cirac, J. I. and Zoller, P. (1995). Quantum computations with cold trapped ions. Phys. Rev. Lett., 74(20):4091–4094.

    Article  ADS  Google Scholar 

  2. Cirac, J. I., Zoller, P., Kimble, H. J., and Mabuchi, H. (1997). Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett., 78:3221.

    Article  ADS  Google Scholar 

  3. Imamoglu A., Awschalom, D.D., Burkard, G., Di Vincenzo, D. P., Loss, D., Sherwin, M, and Small, A. (1999). Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett., 83(20):4204–4207.

    Google Scholar 

  4. Jonathan, D., Plenio, M. B., and Knight, P. L. (2000). Fast quantum gates for cold trapped ions. Phys. Rev. A, 62:042307. quantph/0002092.

    Article  ADS  Google Scholar 

  5. Kitaev, A. Y. (1997). Fault tolerant quantum computation with anyons. Preprint:, quant-ph/9707021.

    Google Scholar 

  6. Knill, E., Laflamme, R., and Viola, L. (2000). Theory of quantum error correction for general noise. Phys. Rev. Lett., 84:2525–2528.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Pellizzari, T., Gardiner, S. A., Cirac, J. I., and Zoller, P. (1995). Decoherence, continuous observation, and quantum computing: a cavity QED model. Phys. Rev. Lett., 75(21):3788–3791.

    Article  ADS  Google Scholar 

  8. Sørensen, A. and Mølmer, K. (2000). Entanglement and quantum computation with ions in thermal motion, quant-ph/0002024.

    Google Scholar 

  9. Steane, A. M. (1999). Efficient fault-tolerant quantum computing. Nature, 399:124–126. quant-ph/9809054.

    Article  ADS  Google Scholar 

  10. Steane, A. M. and Lucas, D. M. (2000). Quantum computing with trapped ions, atoms and light. Fortschritte der Physik, 48:839–858.

    Article  ADS  Google Scholar 

  11. Steane, A. M., Roos, C. F., Stevens, D., Mundt, A., Leibfried, D., Schmidt-Kaler, F., and Blatt, R. (2000). Speed of ion trap quantum information processors. Phys. Rev. A, 62:042305.

    Article  ADS  Google Scholar 

  12. van Enk, S. J., Cirac, J. I., and Zoller, P. (1997). Purifying two-bit quantum gates and joint measurements in cavity QED. Phys. Rev. Lett., 79:5178–5181.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Steane, A.M. (2002). Realising Quantum Computing: Physical Systems and Robustness. In: Tombesi, P., Hirota, O. (eds) Quantum Communication, Computing, and Measurement 3. Springer, Boston, MA. https://doi.org/10.1007/0-306-47114-0_31

Download citation

  • DOI: https://doi.org/10.1007/0-306-47114-0_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46609-0

  • Online ISBN: 978-0-306-47114-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics