Skip to main content

The Representation of Numbers by States in Quantum Mechanics

  • Chapter
  • 754 Accesses

Abstract

The representation of numbers by tensor product states of composite quantum systems is examined. Consideration is limitedto k — ary representations of length L and arithmetic mod K L An abstract representation on an L fold tensor product Hilbert space H arith of number states and operators for the basic arithmetic operation is described. Unitary maps onto a physical parameter based tensor product space H phy are defined and the relations between these two spaces and the dependence of algorithm dynamics on the unitary maps is discussed. The important condition of efficient implementation by physically realizable Hamiltonians of the basic arithmetic operations is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DiVincenzo, D. P. Science 270: 255, (1995); Los Alamos Archives quantph/0002077.

    Article  ADS  MathSciNet  Google Scholar 

  2. W. H. Zurek, Phys. Rev. D 24: 1516, (1981); 26: 1862 (1982); E. Joos and H. D. Zeh, Z. Phys. B 59: 23, (1985); H. D. Zeh quant-ph/9905004; E Joos, quant-ph/9808008.

    Article  ADS  MathSciNet  Google Scholar 

  3. J. R. Shoenfield, Mathematical Logic (Addison-Weseley, Reading, MA 1967); R. Smullyan, Gödel’s Incompleteness Theorems (Oxford University Press, Oxford, 1992).

    MATH  Google Scholar 

  4. I. T. Adamson, Introduction to Field Theory, 2nd. Edition, Cambridge University Press, London, 1982.

    Book  MATH  Google Scholar 

  5. P. Benioff, Los Alamos Archives Preprint quant-ph/0003063.

    Google Scholar 

  6. N.A. Gershenfeld, Science 275: 350 (1997); D.G. Cory, A.F. Fahmy, and T.F. Havel, Proc. Natl. Acad. Sci. 94: 1634 (1997).

    Article  MathSciNet  Google Scholar 

  7. R. Landauer, Physics Today 44: No 5, 23, (1991); Physics Letters A 217: 188, (1996); in Feynman and Computation, Exploring the Limits of Computers, A.J.G. Hey, Ed., (Perseus Books, Reading MA, 1998).

    Google Scholar 

  8. L.K. Grover, in Proceedings of 28th Annual ACM Symposium on Theory of Computing ACM Press New York 1996, p. 212; Phys. Rev. Letters, 79: 325 (1997); Phys. Rev. Letters, 80: 4329 (1998).

    Google Scholar 

  9. P. W. Shor, in Proceedings, 35th Annual Symposium on the Foundations of Computer Science, S. Goldwasser (Ed), IEEE Computer Society Press, Los Alamitos, CA, 1994, pp 124–134; SIAM J. Computing, 26: 1481 (1997).

    Chapter  Google Scholar 

  10. S. Lloyd, Los Alamos Archives preprint quant-ph/9908043; Y. J. Ng, Los Alamos Archives Preprint quant-ph/0006105.

    Google Scholar 

  11. W. H. Zurek, Physics Today 44: No. 10, 36 (1991); J.R. Anglin, J. Paz, and W. H. Zurek, Phys. Rev A 55: 4041 (1997); W. G. Unruh, Phys. Rev. A 51: 992 (1995).

    Article  Google Scholar 

  12. R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Phys. Rev. Letters 77: 198 (1996); D. P. DiVincenzo and P. W. Shor, Phys. Rev. Letters 77: 3260 (1996); E. M. Raines, R. H. Hardin. P. W. Shor, and N. J. A. Sloane, Phys. Rev. Letters 79: 954 (1997); E. Knill, R. Laflamme, and W. H. Zurek, Science 279: 342 (1998).

    Article  ADS  Google Scholar 

  13. C.H. Bennett in Feynman and Computation, Exploring the Limits of Computers A.J.G. Hey, Ed., (Perseus Books, Reading MA, 1998); C.H. Bennett D.P. DiVincenzo, C.A. Fuchs, T. Mor, E. Rains, P.W. Shor, J.A. Smolin, and W.K. Wooters, Rev. A 59: 1070 (1999).

    Google Scholar 

  14. D. Bacon, D. A. Lidar and K. B. Whaley, Phys.Rev. A60: (1999) 1944.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Benioff, P. (2002). The Representation of Numbers by States in Quantum Mechanics. In: Tombesi, P., Hirota, O. (eds) Quantum Communication, Computing, and Measurement 3. Springer, Boston, MA. https://doi.org/10.1007/0-306-47114-0_28

Download citation

  • DOI: https://doi.org/10.1007/0-306-47114-0_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46609-0

  • Online ISBN: 978-0-306-47114-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics