Advertisement

Quantum-Tomography Method in Information Processing

  • M. A. Man’ko

Abstract

Analogy of time-dependent analytic signal to the wave function is used to apply in signal analysis the new tomographic approach developed recently in quantum mechanics and quantum optics. The tomographic probability and analytic signal are shown to be connected by the integral transform with a kernel related to the fractional Fourier transform.

Keywords

Noncommutative tomography fractional Fourier transform analytic signal Ville-Wigner quasidistribution function Green function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bachert, H., et al., (1975). Sov. J. Quantum Electron. V. 45. P. 1102; (1975). IEEE Quantum Electron. QE-11/1. Pt. 2. P. 510.CrossRefADSGoogle Scholar
  2. [2]
    Ville, J. (1948). Cables et Transmission. V. 2. P. 61.Google Scholar
  3. [3]
    Wigner, E. (1932). Phys. Rev. V. 40. P. 749.CrossRefADSzbMATHGoogle Scholar
  4. [4]
    Mancini, S., Man’ko, V.I., and Tombesi, P. (1995). Quantum Semiclass. Opt. V. 7. P. 615; (1996). Phys. Lett. A. V. 213. P. 1.ADSCrossRefGoogle Scholar
  5. [5]
    Man’ko, V.I., and Mendes, R.V. (1999). Phys. Lett. A. V. 263. P. 53.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Man’ko, M.A. (1999). J. Russ. Laser Res. V. 20. P. 225; (2000). J. Russ. Laser Res. V. 21. P. 411.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M. A. Man’ko
    • 1
  1. 1.P.N. Lebedev Physical InstituteMoscowRussia

Personalised recommendations