Skip to main content

Part of the book series: Fundamental Materials Research ((FMRE))

  • 278 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Phillips, J.C. (1979) Topology of covalent non-crystalline solid I: short-range order in chalcogenide alloys, J. Non-Cryst. Solids 34, 153–181.

    Article  CAS  Google Scholar 

  2. Phillips, J.C. (1999) Constraint theory, stiffness percolation and the rigidity transition in network glasses, in M.F. Thorpe and P.M. Duxxbury (eds.), Rigidity Theory and Applications, Kluwer Academic/Plenum Publishers, New York, pp. 155–172.

    Google Scholar 

  3. Thorpe, M.F. (1983) Continuous deformations in random networks, J. Non-Cryst. Solids 57, 355–370.

    Article  CAS  Google Scholar 

  4. Thorpe, M.F., Jacobs, D.J., and Djordjević, B.R. (2000) The structure and rigidity of network glasses, in P. Boolchand (ed.) Insulating and semiconducting glasses, World Scientific Press, Singapore, pp. 95–145.

    Google Scholar 

  5. Boolchand, P., Feng, X., Selvanathan, D., and Bresser, W.J. (1999) Rigidity transition in chalcogenide glasses, in the book listed in P.M. Duxxbury (eds.), Rigidity Theory and Applications, Kluwer Academic/Plenum Publishers, New York Ref. [2], pp. 279–296.

    Google Scholar 

  6. Selvanathan, D., Bresser, W.J., and Boolchand, P. (2000) Stiffness transitions in SixSe1−x glasses from Raman scattering and temperature-modulated differential scanning calorimetry, Phys. Rev. B61, 15061–15076.

    Google Scholar 

  7. Kamitakahara, W.A., Cappelletti, R.L., Boolchand, P., Halfpap, B.L., Gompf, F., Neumann, D.A., and Mutka, H. (1991) Vibrational densities of states and network rigidity in chalcogenide glasses, Phys. Rev. B44, 94–100.

    Google Scholar 

  8. Feng, X., Bresser, W.J., and Boolchand, P. (1997) Direct evidence for stiffness threshold in chalcogenides glasses, Phys. Rev. Lett. 78, 4422–4425.

    Article  CAS  Google Scholar 

  9. Murase, K. (2000) Raman Scattering in the book listed in Ref. [4], pp. 415–463.

    Google Scholar 

  10. Wang, Y., Nakamura, M., Matsuda, O., and Murase, K. (2000) Raman-spectroscopy studies on rigidity percolation and fragility in Ge-(S,Se) glasses, J. Non-Cryst. Solids 266–269, 872–875.

    Google Scholar 

  11. Tatsumisago, M., Halfpap, B.L., Green, J.L., Lindsay, S.M., and Angell, C.A. (1990) Fragility of Ge-As-Se glass-forming liquids in relation to rigidity percolation, and the Kauzmann paradox, Phys. Rev. Lett. 64, 1549–1552.

    Article  CAS  Google Scholar 

  12. Nemanich, R.J., Connel, G.A.N., Hayes, T.M., and Street, R.A. (1978) Thermally induced effects in evaporated chalcogenide films. I. Structure, Phys. Rev. B18, 6900–6914.

    Google Scholar 

  13. Lucovsky, G. and Galeener, F.L. (1980) Intermediate range order in amorphous solids, J. Non-Cryst. Solids 35&36, 1209–1214.

    Google Scholar 

  14. Murase, K., Inoue, K., and Matsuda, O. (1993) Medium-range structure and relaxation in chalcogenide glasses investigated by Raman scattering, in Y. Sakurai, Y. Hamakawa, T. Masumoto, K. Shirae, and K. Suzuki (eds.), Current Topics in Amorphous Materials: Science and Technology, Elsevier, Amsterdam, pp. 47–58.

    Google Scholar 

  15. Nakaoka, T., Wang, Y., Matsuda, O., Inoue, K. and Murase, K. Reversible photoinduced structural changes in GeSe2 glass at low-temperature, in Proc. 25rd Int. Conf. Phys. Semicond., Osaka 2000, H. Kamimura and T. Ando (eds.), (Springer Verlag, Berlin), to be published in January 2001.

    Google Scholar 

  16. Jacobs, D.J., Kuhn, L.A., and Thorpe, M.F. (1999) Flexible and rigid regions in proteins, in the book listed in P.M. Duxxbury (eds.), Rigidity Theory and Applications, Kluwer Academic/Plenum Publishers, New York Ref. [2], pp. 357–384.

    Google Scholar 

  17. Wang, Y, Matsuda, O., Inoue, K., Yamamuro, O., Matsuo, T., and Murase, K. (1998) A Raman scattering investigation of the structure of glassy and liquid GexSe1−x, J. Non-Cryst. Solids 232–234, 702–707.

    Google Scholar 

  18. Tronc, P., Bensoussan. M., and Brenac, A. (1973) Optical-absorption edge and Raman scattering in GexSe1−x glasses, Phys. Rev. B8, 5947–5956.

    Google Scholar 

  19. Bridenbaugh, P.M., Espinosa, G.P., Griffiths, J.E., and Phillips, J.C. (1979) Microscopic origin of the companion A1 Raman line in glassy Ge(S,Se)2, Phys. Rev. B20, 4140–4144.

    Google Scholar 

  20. Jackson, K., Briley, A., Grossman, S., Porezag, D.V., and Pederson, M.R. (1999) Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study, Phys. Rev. B60, R14985–R14989.

    Google Scholar 

  21. Sakai, K, Yoshino, K., Fukuyama, A., Yokoyama, H., Ikari, T., and Maeda., K, (2000) Crystallization of amorphous GeSe2 semiconductor by isothermal annealing without light radiation, Jpn. J. Appl. Phys. 39, 1058–1061.

    CAS  Google Scholar 

  22. Nakaoka, T., Wang, Y., Murase, K., Matsuda, O., and Inoue, K. (2000) Resonant Raman scattering in crystalline GeSe2, Phys. Rev. B61, 15569–15572.

    Google Scholar 

  23. Azoulay, R., Thibierge, H., and Brenac. A. (1975) Devitrification characteristics of GexSe1−x, glasses, J. Non-Cryst. Solids 18, 33–53.

    Article  CAS  Google Scholar 

  24. Stølen, S., Johnsen, H.B., Bøe, C.S., Grande, T., and Karlsen, O.B. (1999) Stable and metastable phase equilibria in the GeSe2-Se system, J. Phase Equilib. 20, 17–28.

    Google Scholar 

  25. Boolchand. P. and Bresser, W.J. (2000) The structural origin of broken chemical order in GeSe2 glass, Phil. Mag. B, to be published.

    Google Scholar 

  26. Moynihan, C.T. and Schroeder, J. (1993) Non-exponential structural relaxation, anomalous light scattering and nanoscale inhomogenities in glass-forming liquids, J. Non-Cryst. Solids 160, 52–59; Cicerone, M.T. and Ediger, M.D. (1995) Relaxation of spatially heterogeneous dynamic domains in supercooled ortho-terphenyl, J. Chem. Phys. 103, 5684–5692.

    Article  CAS  Google Scholar 

  27. Doliwa, B. and Heuer, A. (1998) Consequences of kinetic inhomogeneities in glassess, Phys. Rev. E54, 1652–1662.

    Google Scholar 

  28. Petri, I., Salmon, P.S., and Howells, W.S. (1999) Change in the topology of the glass forming liquid GeSe2 with increasing temperature, J. Phys.: Condens. Matter 11, 10219–10227.

    CAS  Google Scholar 

  29. Murase, K and Fukunaga, T, (1984) Pressure induced structural change of clusters in chalcogenide glasses, in P.C. Taylor and S.G. Bishop (eds.) Optical effects in amorphous semiconductors, A1P Conf. Proc. No. 120 (AIP, New York), pp. 449–456.

    Google Scholar 

  30. Poole, P.H., Grande, T., Angell, C.A., and McMillan, P.P. (1997) Polymorphic phase transitions in liquids and glasses, Science 275, 322–323.

    Article  CAS  Google Scholar 

  31. Lacks, D.J. (2000) First-order amorphous-amorphous transformation in silica, Phys. Rev. Lett. 84, 4629–4633.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wang, Y., Nakaoka, T., Murase, K. (2002). Thermal Relaxation and Criticality of the Stiffness Transition. In: Thorpe, M.F., Phillips, J.C. (eds) Phase Transitions and Self-Organization in Electronic and Molecular Networks. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47113-2_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47113-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46568-0

  • Online ISBN: 978-0-306-47113-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics