Skip to main content

Part of the book series: Fundamental Materials Research ((FMRE))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrer, R.M. (1978) Zeolites and Clay Minerals as Sorbants and Moelcular Sieves, Academic Press, New York

    Google Scholar 

  2. Dyer, A. (1988) An Introduction to Zeolite Molecular Sieves, John Wiley & Sons, New Work

    Google Scholar 

  3. Cusumano, J.A. (1992) New technology and the environment, Chemtech, 22, 482–489

    CAS  Google Scholar 

  4. Colyer, L.M., Greaves, G.N., Carr, S.W. and Fox, K.K. (1997) Collpase and recrystallisation processes in zinc-exchanged zeolite-A: A combined x-ray diffraction, XAFS, and NMR study, J. Phys. Chem., 101, 10105–10114

    CAS  Google Scholar 

  5. Gillet, P., Malézieux, J-P and Itié, J-P (1996) Phase changes and amorphisation of zeolites at high pressures: the case of scolecite and mesolite, Am. Mineral, 81, 651–657

    CAS  Google Scholar 

  6. Smith, J.V. and Dowell, L.G. (1968), Zeit. für Kristall, 126, 135

    Google Scholar 

  7. Gramlich, V. and Meier, W.M. (1971), Zeit für Kristall., 133, 134

    CAS  Google Scholar 

  8. Richet, P. and Gillet, P. (1997) Pressure-induced amorphisation of minerals: a review, Eur. J. Mineral., 9, 907–933

    CAS  Google Scholar 

  9. Sharma, S.M. and Sikka, S.K. (1996) Pressure-induced amorphisation of materials, Progr. Materials Sci., 40, 1–77

    CAS  Google Scholar 

  10. Schwartz, R.B. and Johnson, W.L. (1988) Remarks on solid state amorphising transformations, J. Less Common Metals, 140, 1–6

    Google Scholar 

  11. Lin, I.J., Navid, S., Grodzian, D.J.M. (1975) Changes in the state of solids and mechano-chemical reactions in prolonged comminution processes, Miner. Sci. Eng., 7, 313–336

    CAS  Google Scholar 

  12. Müller, G., (1998) Amorphisation processes in silicon, Current Opinion in Solid State & Materials Science, 3, 364–370

    Google Scholar 

  13. Thomas, J.L., Mange, M., and Eyaud, C. (1971) in Molecular Sieve Zeolites-I, Advances in Chemistry Series 101, Americal Chemical Society, Washington D.C., pp. 443.

    Google Scholar 

  14. Scmitz, W., Siegel, H. and Schöllner, (1981), Cryst. Res. Technol., 16, 385

    Google Scholar 

  15. Lutz, W., Engelhardt, H., Frichner-Schmittler, H., Peuker, Ch., Löffler, E. and Siegel, H. (1985) The influence of water steam on the direct phase transformation of zeolite NaA to nepheline by thermal-treatment, Cryst. Res. Technol., 20, 1217–1223

    CAS  Google Scholar 

  16. Lutz, W., Frichner-Schmittler, Richter-Mendau, J., Becker, G., and Bülow, M. (1986) Formation of a special intermediate during phase-transformation of zeolite NaA to nepheline, Cryst. Res. Technol., 21, 1339–1344

    CAS  Google Scholar 

  17. Lutz, W., Fahlke, B., Lohse, U. and Seidel, R. (1983) Investigation of the hydrotheraml stabilities of NaA, NaCaA and NaMgA zeolites, Chem. Technol., 35, 250–253

    CAS  Google Scholar 

  18. Colyer, L.M., Greaves, G.N., Dent, A.J., Fox, K.K., Carr, S.W. and Jones, R.H. (1995) In situ study of ceramic formation from Co2+ and Zn2+ exchanged zeolite-A using combined XRD/XAFS techniques, Nucl. Instr. and Meth. in Phys. Res. B, 97, 107–110

    CAS  Google Scholar 

  19. Colyer, L.M (1996) Recrystallisation processes in transition metal exchanged zeolite-A, PhD Thesis, University of Keele.

    Google Scholar 

  20. Corbin, D.R., Parise, J.B., Chowdhry, U. and Subramanian, M.A. (1991), Mater. Res. Soc. Symp. Proc., 233, 213

    CAS  Google Scholar 

  21. Subramanian, M.A., Corbin, D.R. and Chowdhry, U. (1993), Bull. Mater. Sci., 16, 665

    CAS  Google Scholar 

  22. Sankar, G., Wright, P.A., Natarajan, S., Thomas, J.M., Greaves, G.N., Dent, A.J., Dobson, B.R., Ramsdale, C.A. and Jones, R.H. (1993) QuEXAFS-XRD: A new technique in high temperature materials chemistry. An illustrative in situ study of the zinc oxide enhanced solid-state production of cordierite from a precursor zeolite, J. Phys. Chem., 97, 9550–9554

    Article  CAS  Google Scholar 

  23. MacMillan, P.M. (1979) Glass-ceramics, Academic Press, London

    Google Scholar 

  24. Barnford, H., and Tipper, C.F.H. (1980) Theory of Solid State Reaction Kinetics in Comprehensive Chemical Kinetics, Vol 22, Academic Press, New York.

    Google Scholar 

  25. Toplis, M.J., Dingwell, D.B, Hess, K-U. and Lenci, T. (1997) Viscosity, fragility, and configurational entropy of melts along the join SiO2-NaAlSiO4, Am. Mineral. 82, 979–990

    CAS  Google Scholar 

  26. Hazen, R.M. and Finger, L.W. (1979), J. Geophys. Res., 84, 6723

    CAS  Google Scholar 

  27. Hazan, R.M. (1983) Zeolite molecular sieve 4A: anomalous compressibility and volume discontinuities at high pressure, Science, 219, 1065–1067

    Google Scholar 

  28. Hazan, R.M. and Finger L.W. (1984) Compressibility of zeolite 4A is dependent on the molecular size of the hydrostatic pressure medium, J. Appl. Phys., 56, 1838–1840

    Google Scholar 

  29. Mishma, O., Calvert, L.D. and Whalley, E. (1984) “Melting ice”I at 77K and 10kbar: a new method of making amorphous solids, Nature, 310, 393–395

    Google Scholar 

  30. Hemley, R.J., Jephcote, A.P., Mao, H.K., Ming, L.C. and Manghnani, M.H. (1988) Pressure-induced amorphisation of crystalline silica, Nature, 334, 52–54

    Article  CAS  Google Scholar 

  31. Kruger, M.B. and Jeanioz, R. (1990) Memory glass: an amorphous material formed from A1PO4, Science, 249, 647–649

    CAS  Google Scholar 

  32. Gillet, P., Badro, J., Varel, B. and MacMillan, P.F. (1995), High-pressure behaviour of A1PO4: Amorphisation and the memory glass effect revisited, Phys. Rev. B, 51, 11262–11269

    Article  CAS  Google Scholar 

  33. Handa, Y.P., Tse, J.S., Klug, D.D and Walley, E. (1991) Pressure-induced phase transitions in Clathrate Hydrates, J. Chem. Phys., 94, 623–627

    Article  CAS  Google Scholar 

  34. Williams, Q. and Jeanloz, R. (1989) Static amorphisation of anorthite at 300K and comparison with a diaplectic glass, Nature, 338, 413–415

    CAS  Google Scholar 

  35. Tse, J.S. and Klug, D.D. (1991), Phys. Rev. Lett. Mechanical instability of alpha-quartz — a Molecular Dynamics Study, 67, 3559–3562

    Article  CAS  Google Scholar 

  36. Tse, J.S. (1992), J. Chem. Phys., 96, 5482–5487

    Article  CAS  Google Scholar 

  37. Binggeli, N., Keskar, N.R. and Chelikowsky (1994) Pressure-induced amorphisation, elastic instability, and soft modes in alpha-quartz, Phys. Rev. B, 49, 3075–3081

    CAS  Google Scholar 

  38. Kingma, K.J., Hemley, R.J., Mao, H.K., Veblen, D.R. (1993) New high-pressure transformation inquartz, Phys. Rev. Lett., 70, 3927–3930 and 72, 1301–1302

    Article  CAS  Google Scholar 

  39. Watson, G.W., and Parker, S.C. (1995) Quartz amorphisation — A dynamic instability, Phil. Mag. Lett., 71, 59–64

    CAS  Google Scholar 

  40. Badro, J., Barrat, J-L and Gillet, P. (1996) Numerical simulation of α-quartz under nonhydrostatic compression: Memory glass and five-coordinated crystalline phases, Phys. Rev. Lett., 76, 772–775

    Article  CAS  Google Scholar 

  41. Tse, J.S. and Klug, D.D. (1992) Structural memory in pressure-amorphised A1PO4, Science, 255, 1559–1561

    CAS  Google Scholar 

  42. Tse, J.S., Klug, D.D., Ripmeester, J.A., Desgreniers, S. and Lagarec, K. (1994) The role of non-deformable units in pressure-induced amorphization of clathrasils, Nature, 369, 724–726

    Article  CAS  Google Scholar 

  43. Greaves, G.N., Sapelkin, A. and Sankar, G., unpublished results

    Google Scholar 

  44. Thorpe, M.F. (1995) Bulk and surface floppy modes, J. Non-Cryst. Solids, 182, 135–142

    Article  CAS  Google Scholar 

  45. Phillips, J.C. (1979) Topology of covalent non-crystalline solids I: short range order in chalcogenide alloys, J. Non-Cryst. Solids, 34, 153–181; Phillips, J.C. (1979) Topology of covalent non-crystalline solids II: medium range order in chalcogenide alloys and a-Si(Ge), J. Non-Cryst. Solids, 43, 37–77

    Article  CAS  Google Scholar 

  46. Zhang, M. and Boochland, P. (1994) The Central Role of BRoken Bond-Bending Constraints in Promoting Glass Formation in the Oxides, Science, 266, 1355–1357

    CAS  Google Scholar 

  47. Parise, J.B., Weidner, D.J., Chen, J., Liebermann, R.C. and Chen, G. (1998) In situ studies of the properties of materials under high-pressure and temperature conditions using multi-anvil apparatus and synchrotron X-rays, Annu. Rev. Mater. Sci., 28, 349–374

    Article  CAS  Google Scholar 

  48. Dent A.J., Dobson B.R., Greaves G.N., Sankar G., Roberts M., Catlow C.R.A., Thomas J.M. and Rayment T.A. (1995) New Furnace Design for Use in Combined X-ray Absorption and Diffraction for Ceramics and Catalyst Studies: A Study of the Formation of the CuCoMn(CO3)3 Catalyst for CO Oxidation, Nucl. Instr. & Methods B, 97, 20–22

    CAS  Google Scholar 

  49. Thomas J.M., Greaves G.N., Catlow C.R.A. (1995) Solid Catalysts studied under Operating Conditions, Nucl. Instr. & Methods B, 97, 1–10

    CAS  Google Scholar 

  50. Bras W., Derbyshire G.E., Ryan A.J., Mant G. R., Felton A., Lewis R. A., Hall C. J. and Greaves G.N. (1993) Simultaneous Time Resolved SAXS and WAXS Experiments Using Synchrotron Radiation, Nucl. Instr. and Methods A, 326, 587–591

    Google Scholar 

  51. Aletru C., Greaves G.N., and Sankar G. (1999) Tracking in Detail the Synthesis of Cadmium Oxide from a Hydroxyl Gel Using Combinations of in situ X-ray Absorption Fine structure Spectroscopy, X-ray Diffraction, and Small Angle X-ray Scattering, J. Phys. Chem., 103, 4147–4152

    CAS  Google Scholar 

  52. Greaves G.N., Aletru C., Sankar G., Kempson V. and Colyer L. (1999) In Situ Characterisation of Semiconducting Nano-particles in Zeolites with XAFS, XRD and SAXS, Jap. J. Appl. Phys., 38, 202–205

    CAS  Google Scholar 

  53. Secco, R.A. and Huang, Y. (1999), Pressure-nduced disorder in hydrated Na-A zeolite, J. Phys. Chem. Solids, 60, 999–1002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Greaves, G. (2002). Zeolite Instability and Collapse. In: Thorpe, M.F., Phillips, J.C. (eds) Phase Transitions and Self-Organization in Electronic and Molecular Networks. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47113-2_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-47113-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46568-0

  • Online ISBN: 978-0-306-47113-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics