Skip to main content

Optical Refrigeration Using Anti-Stokes Fluorescence from Molecular Dyes

  • Chapter
  • 2007 Accesses

Abstract

Irradiating a sample of a luminescent material into the low energy tail of the first electronic absorption band generates anti-Stokes luminescence and provides a means of removing thermal energy from the sample and thus lowering its temperature. A recent study of the molecular dye, rhodamine 101, dissolved in acidified ethanol has shown this novel, optical cooling effect. We examine the merits of using dye molecules and discuss how these can be modified to provide a suitable material that can be used as a cooling medium in an optical refrigerator. The issues of Stokes loss, re-absorption, excited state lifetime and radiative energy transfer in the context of optimizing the intrinsic cooling efficiency of the material are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pringsheim, P., “Some remarks concerning the difference between luminescence and temperature radiation. Anti-Stokes fluorescence,” J. Phys., USSR vol. 10, (1946), pp. 495–498.

    Google Scholar 

  2. Vavilov, S., “Photoluminescence and thermodynamics,” J. Phys., USSR vol. 10 (1946), pp. 499–502.

    Google Scholar 

  3. Landau, L., “On the thermodynamics of photoluminescence,” J. Phys., USSR vol. 10 (1946), pp. 503–506.

    Google Scholar 

  4. Epstein, R.I., Buchwald, ML, Edwards, B.C., Gosnell T.R. and Mungan, C.E., “Observation of laser-induced fluorescent cooling of a solid,” Nature, vol. 377 (1995), pp. 500–502.

    Article  ADS  Google Scholar 

  5. Mungan, C.E., Buchwald, M.I., Edwards, B.C., Epstein, R.I. and Gosnell, T.R., “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett., vol. 78(6) (1997), pp. 1030–1033.

    Article  ADS  Google Scholar 

  6. Mungan, C.E., Buchwald, M.I., Edwards, B.C., Epstein, R.I. and Gosnell, T.R., “Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K,” Appl. Phys. Lett., vol. 71(11), (1997), pp. 1458–1460.

    Article  ADS  Google Scholar 

  7. Luo, X., Eisaman, M.D. and Gosnell, T.R., “Laser cooling of a solid by 21 K starting from room temperature,” Optics Letters, vol. 23(8), (1998), pp. 639–641.

    Article  ADS  Google Scholar 

  8. Gosnell, T.R., “Laser cooling of a solid by 65 K starting from room temperature,” Optics Letters, vol 24(15), (1999), pp. 1041–1043.

    Article  ADS  Google Scholar 

  9. Murtagh, M.T., Sigel, G.H., Fajardo, J.C., Edwards, B.C. and Epstein, R.I., “Laser-induced fluorescent cooling of rare-earth-doped fluoride glasses,” J. Non-cryst. Solids., vol. 253, (1999), pp. 50–57.

    Article  ADS  Google Scholar 

  10. Rayner, A., Friese M.E.J., Truscott, A.G., Heckenberg, N.R. and Rubinsztein-Dunlop, H., “Laser cooling of a solid from ambient temperature,” J. Mod. Opt., (in press 2000).

    Google Scholar 

  11. Gauck, H., Gfroerer, T.H., Renn, M.J., Cornell, E.A. and Bertness, K.A., “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A-Mat. Sci & process., vol. 64(2), (1997), pp. 143–147.

    Article  ADS  Google Scholar 

  12. Finkeissen, E., Potemski, M., Wyder, P., Vina, L. and Weimann, G., “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett., vol. 75(9), (1999), pp. 1258–1260.

    Article  ADS  Google Scholar 

  13. Zander, C. and Drexhage, K.H., Advances in Photochemistry, Wiley, New York (1995), pp. 59–78.

    Book  Google Scholar 

  14. Clark, J.L. and Rumbles, G., “Laser cooling in the condensed phase by frequency up-conversion”, Phys. Rev. Lett., vol. 76 (1996), pp. 2037–2040.

    Article  ADS  Google Scholar 

  15. Mungan, C.E. and Gosnell, T.R., “Laser cooling in the condensed phase by frequency up-conversion-Comment,” Phys. Rev. Lett., vol. 77 (1996), pp. 2840.

    Article  ADS  Google Scholar 

  16. Rumbles, G. and Clark, J.L., “Laser cooling in the condensed phase by frequency up-conversion-Reply,” Phys. Rev. Lett., vol. 77 (1996), pp. 2841.

    Article  ADS  Google Scholar 

  17. Sarkisov, S., Curley, M., Wilkosz, A. and Grymalsky, V., “Optical channel waveguides formed by upconverted photobleaching of dye-doped polymer film in regime of dark spatial soliton”, Optics Comms., vol. 161, (1999), pp. 132–140.

    Article  ADS  Google Scholar 

  18. Clark, J.L., Miller, P.P. and Rumbles, G., “Red edge photophysics of ethanolic rhodamine 101 and the observation of laser cooling in the condensed phase,” J. Phys. Chem. A., vol. 102(24), (1998), pp. 4428–4437.

    Article  Google Scholar 

  19. Edwards, B.C., Buchwald, M.I., and Epstein, R.I., “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Inst., vol. 69(5), (1998), pp. 2050–2055.

    Article  ADS  Google Scholar 

  20. Edwards, B.C., Anderson, J.E., Epstein, R.I., Mills, G.L. and Mord, A.J., “Demonstration of a solid-state optical cooler: An approach to cryogenic refrigeration,” J. Appl. Phys., vol. 86(11), (1999), pp. 6489–6493.

    Article  ADS  Google Scholar 

  21. Edwards, B.C., Anderson, J.E., Epstein, R.I., “Solid-state optical coolers developments,” Cryocoolers 11, Plenum Press, New York (2001).

    Google Scholar 

  22. Mord, A.J., Mills, G.L. and Slaymaker, P.A., “Design and performance of an optical cryocooler for a focal plane application”, Cryocoolers 11, Plenum Press, New York (2001).

    Google Scholar 

  23. Karstens, K. and Kobs, K., J. Phys. Chem., vol. 84, (1980), pp. 1871.

    Article  Google Scholar 

  24. James, T.H., “Theory of the photographic process”, 4th Ed., Macmillan, New York (1977), Ch. 12, pp. 365.

    Google Scholar 

  25. Rahn, M.D. and King, T.A., “High-performance solid-state dye laser based on perylene-orange-doped polycom glass,” J. Mod. Optics, vol. 45(6), (1998), pp. 1259–1267.

    Article  ADS  Google Scholar 

  26. Dhami, S., deMello, A.J., Rumbles, G., Bishop, S.M., Phillips, D. and Beeby, A., “Phthalocyanine fluorescence at high concentrations: Dimers or re-absorption effect?”, Photochem. Photobiol., vol. 61(4), (1995), pp. 341–346.

    Article  Google Scholar 

  27. Frey, R., Micheron, F. and Pocholle, J.P., “Comparison of Peltier and anti-Stokes optical cooling,” J. Appl. Phys., vol. 87(9), (2000), pp. 4489–4498.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rumbles, G., Heeg, B., Lloyd, J.L., De Barber, P.A., Tomlinson, B.J. (2002). Optical Refrigeration Using Anti-Stokes Fluorescence from Molecular Dyes. In: Ross, R.G. (eds) Cryocoolers 11. Springer, Boston, MA. https://doi.org/10.1007/0-306-47112-4_77

Download citation

  • DOI: https://doi.org/10.1007/0-306-47112-4_77

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46567-3

  • Online ISBN: 978-0-306-47112-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics