Skip to main content

Enhancing the Production of Endohedral Fullerenes: a Theoretical Proposal

  • Chapter
Physics of Low Dimensional Systems

Abstract

It has been proposed that in a C60 molecule containing two kinds of isotopes one could selectively excite one of them to open temporary gates in the carbon cage and induce the penetration of different atoms inside the molecule in order to produce endohedral fullerenes. In the present work we calculate, from first principles, the vibrational excitation spectra substituting one and two 12C atoms for 13C isotopes in the C60 molecule. To obtain the force constants between the carbon atoms we performed the second derivatives of the energy calculated within the Hartree-Fock approximation. A comparison of the frequency shifts in the vibrational spectra produced by the isotopes with Raman spectroscopy experiments is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. W. Kroto, J.R. Heath, S. C. O’Brien, R. F. Kurl, and R.E. Smalley, Nature 318, 162 (1985).

    Article  ADS  Google Scholar 

  2. J. R. Heath, S. C. O’Brien, Q. Zhang, Y. Liu, R. F. Curl, H. W. Kroto, F. K. Tittel, and R. E. Smalley, J. Am. Chem. Soc. 107, 7779 (1985).

    Article  Google Scholar 

  3. Y. Chai, T. Guo, C. M. Jin, R. E. Hanfler, L. P. Felipe Chibante, J. Fare, L. H. Wang, J. M. Alford, and R. E. Smalley, J. Phys. Chem. 95, 7564 (1991).

    Article  Google Scholar 

  4. R. D. Johnson, D. S. Bethune, and C. S. Yannoni, Account of Chem. Rec. 25, 169 (1992).

    Article  Google Scholar 

  5. M. Saunders, H. A. Jimenez-Vasquez, R. J. Cross, and R. J. Poreda, Science 259, 1428 (1993).

    Article  ADS  Google Scholar 

  6. R. F. Curl, Carbon 30, 1149 (1992).

    Article  Google Scholar 

  7. J.L. Morán-L’opez, J.M. Cabrera-Trujillo, and J. Dorantes-Dávila, Solid State Commun. 96, 451 (1995).

    Article  ADS  Google Scholar 

  8. S. Guha, J. Menendez, J. B. Page, G. B. Adams, G. S. Spencer, J. P. Lehman, P. Giannozzi, and S. Baroni, Phys. Rev. Lett. 72, 3359 (1994).

    Article  ADS  Google Scholar 

  9. R. D. Johnson, G. Meijer, J. R. Salem, and D. S. Bethune, J. Am. Chem. Soc. 113, 3619 (1991).

    Article  Google Scholar 

  10. C. S. Yannnoni, P. P. Berrier, D. S. Bethune, G. Meijer, and J. R. Salem, J. Am. Chem. Soc. 113, 3190 (1991).

    Article  Google Scholar 

  11. A. P. Ramirez, A. R. Kortan, M. P. Rosseinsky, S. J. Duclos, A. M. Mujsce, R. C. Haddon, D. W. Murphy, A. V. Makhija, S. M. Zaburark and, K. B. Lyons, Phys. Rev. Lett 68, 1058, (1992).

    Article  ADS  Google Scholar 

  12. A. A. Quong, M. R. Pederson, and J. L. Feldman, Solid State Commun. 87, 535 (1993).

    Article  ADS  Google Scholar 

  13. K. A. Wang, A. M. Rao, P. C. Eklund, M. S. Dresselhaus, and G. Dresselhus, Phys. Rev. B 48, 11375 (1993).

    Article  ADS  Google Scholar 

  14. P. Giannozzi and S.J. Baroni, J. Chem. Phys. ,100, 8537 (1994).

    Article  ADS  Google Scholar 

  15. G. B. Adams, J. B. Page, O. F. Sankey, J. Sinha, J. Menéndez, and D. R. Huffman, Phys. Rev. B 44, 4052 (1991).

    Article  ADS  Google Scholar 

  16. X. Q. Wang, C. Z. Wang, and K. M. Ho, Phys. Rev. B 48, 1884 (1993).

    Article  ADS  Google Scholar 

  17. D. A. Dixon, B. E. Chase, G. Fitzgerald, and N. Matsuzawa, J. Phys. Chem. 1995, 4486 (1995).

    Article  Google Scholar 

  18. R.L. Murry and G.E. Scuseira, Science 263, 791 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Morán-López, J.L., Soto, J.R., Calles, A. (2001). Enhancing the Production of Endohedral Fullerenes: a Theoretical Proposal. In: Morán-López, J.L. (eds) Physics of Low Dimensional Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-47111-6_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-47111-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0571-3

  • Online ISBN: 978-0-306-47111-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics