Skip to main content

Non-Equilibrium Physics in Solids: Hot-Electron Relaxation

  • Chapter
Physics of Low Dimensional Systems
  • 480 Accesses

Abstract

We discuss the time scales for relaxation of excited electrons due to laser irradiation in transition-metals, ferromagnets like Ni, Co, high T c -superconductors, and semiconductors like diamond and graphite. Ultrafast relaxation faster than ps may occur as a result of strong electron-electron interactions, while magnetoelastic forces controlling magnetic reorientation and domain dynamics, for example, involve relaxation times of the order of 100 ps or more.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aeschlimann, M. Bauer, S. Pawlick, W. Weber, R. Burgemeister, D. Oberli, and H.C. Siegmann, Phys. Rev. Lett. 79, 5158 (1997)

    Article  ADS  Google Scholar 

  2. E. Knoesel, A. Hotzel and M. Wolf, Phys. Rev. B 57, 12812 (1998).

    Article  ADS  Google Scholar 

  3. R. Knorren, K.H. Bennemann, R. Burgemeister, and M. Aeschlimann, Phys. Rev. B ,April 2000.

    Google Scholar 

  4. J. Hohlfeld, E. Matthias, R. Knorren, and K. H. Bennemann, Phys. Rev. Lett. 78, 4861 (1997)

    Article  ADS  Google Scholar 

  5. R. Knorren, and K. H. Bennemann, Appl. Phys. B 68, 501 (1999).

    Article  ADS  Google Scholar 

  6. R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, Science 287, 470 (2000).

    Article  ADS  Google Scholar 

  7. H. Jeschke, FU thesis, Berlin (2000)

    Google Scholar 

  8. J. Jeschke, M. E. Garcia, and K. H. Bennemann, Appl. Phys. A 69, 49 (1999).

    Article  ADS  Google Scholar 

  9. W. Hübner and K. H. Bennemann, Phys. Rev. B 53, 1 (1996)

    Article  Google Scholar 

  10. H. C. Siegmann, private communication

    Google Scholar 

  11. D. R. Penn, S. P. Apell, and S. M. Girvin, Phys. Rev. B 32, 7753 (1985)

    Article  ADS  Google Scholar 

  12. M. Aeschlimann, M. Bauer, S. Pawlik, W. Weber, R. Burgermeister, D. Oberli, and H. C. Siegmann, Phys. Rev. Lett. 79, 5158 (1997).

    Article  ADS  Google Scholar 

  13. R. Knorren and K. H. Bennemann, Appl. Phys. B 68 401 (1999)

    Article  ADS  Google Scholar 

  14. Proc. Stockholm, Conf. Magnetism ,August (1999), to be publ. (ed. K. V. Rao)

    Google Scholar 

  15. R. Knorren, FU thesis, Berlin (2000).

    Google Scholar 

  16. H. C. Siegmann and M. Aeschlimann, private communication (these authors are amongst the first to use ɤ-1 α N(0) for the analysis).

    Google Scholar 

  17. H. Jeschke, M. Garcia, and K. H. Bennemann, to be published.

    Google Scholar 

  18. During crystal growth electron-hole excitations may play an important role; See also H. Jeschke, FU thesis, Berlin (2000).

    Google Scholar 

  19. D. Manske and K. H. Bennemann, Low. Temp. Conference ,February (2000), Houston.

    Google Scholar 

  20. R. Knorren, G. Bouzerar, and K. H. Bennemann, Phys. Rev. B ,to be publ. (2000).

    Google Scholar 

  21. T. A. Luce and K. H. Bennemann, in Nonlinear Optics in Metals (Clarendon Press, Oxford, 1998) p. 437.

    Google Scholar 

  22. J. Hohlfeld, R. Knorren, J. Güdde, and E. Matthias, private communication (1999).

    Google Scholar 

  23. U. Konrad, J. Güdde, V. Jähnke, and E. Matthias, Appl. Phys. B 68, 51 (1999).

    Google Scholar 

  24. D. Manske, T. Dahm, and K. H. Bennemann, cond-mat/9912062.

    Google Scholar 

  25. H. Jeschke, M. Garcia, and K. H. Bennemann, to be publ. (2000).

    Google Scholar 

  26. Clearly, SHG and pump probe spectroscopy can be used to study such dynamics, and from ɤ ~ ∆E-1anis, where ∆Eanis the anisotropy energy, one estimates times of the order of 100 ps.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Bennemann, K.H. (2001). Non-Equilibrium Physics in Solids: Hot-Electron Relaxation. In: Morán-López, J.L. (eds) Physics of Low Dimensional Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-47111-6_40

Download citation

  • DOI: https://doi.org/10.1007/0-306-47111-6_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0571-3

  • Online ISBN: 978-0-306-47111-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics