Skip to main content

The Role of Damping in Ultrafast Magnetization Reversal

  • Chapter
Physics of Low Dimensional Systems
  • 482 Accesses

Abstract

Ultrashort magnetic field pulses generated in the final focus test beam facility at the Stanford Linear Accelerator have been used to study fundamental properties of magnetization reversal in thin films with in-plane and perpendicular easy magnetization directions. For perpendicular magnetized samples we observe ring domains with Kenmicroscopy, which are reminiscent of the field contour during exposure. Their radii represent switching fields in quantitative agreement with the coherent rotation model. In this case switching is caused by a simple rotation of the magnetization around the effective field while the external field pulse is present and thus damping mechanisms do not play a major role. For films with an uniaxial anisotropy in the plane of the film we observe that smaller fields are sufficient to reverse the magnetization, provided that the field is orthogonal to the magnetization. In this geometry maximum torque is exerted on the spins. Precession of the magnetization around the demagnetizing field completes the reversal after the external field ceases to exist. In this case the remagnetization process takes considerably longer time, so that the effect of damping can no longer be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. D. Doyle, S. Stinnett, C. Dawson, and L. He, J. Magn. Soc. Jpn. 22, 91 (1998).

    Google Scholar 

  2. K. B. Klaasen and J. C. L. van Peppen, IEEE Trans. Magn. 35, 625 (1998).

    Article  ADS  Google Scholar 

  3. N. D.Rizzo, T. J. Silva, and A. B. Kos, Phys. Rev. Lett. 83, 4876 (1999).

    Article  ADS  Google Scholar 

  4. D. Weiler and A. Moser, IEEE Trans. Magn. 35, 2808 (1999).

    Article  ADS  Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935).

    MATH  Google Scholar 

  6. T. L. Gilbert, Phys. Rev. 100, 1243 (1955).

    Google Scholar 

  7. L. Néel, Ann. Geophys. 5, 99 (1949).

    Google Scholar 

  8. W. F. Brown, Phys. Rev. 130, 1677 (1963).

    Article  ADS  Google Scholar 

  9. H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. J. D. Hannay, N. S. Walmsley, and R. W. Chantrell, J. Magn. Magn. Mat. 193, 245 (1999).

    Article  ADS  Google Scholar 

  11. V. G. Baryakhtar, B. A. Ivanov, A. L. Sukstanskii, and E. Yu. Melikhov, Phys. Rev. B 56, 619 (1997).

    Article  ADS  Google Scholar 

  12. H. Suhl, IEEE Trans. Magn. 34, 1834 (1998).

    Article  ADS  Google Scholar 

  13. J. D. Hannay, R. W. Chantrell, H. J. Richter, J. Appl. Phys. 85, 5012 (1999).

    Article  ADS  Google Scholar 

  14. W. K. Hiebert, A. Stankiewicz, and M. R. Freeman, Phys. Rev. Lett. 79, 1134 (1997).

    Article  ADS  Google Scholar 

  15. T. M. Crawford, T. J. Silva, C. W. Teplin, and C. T. Rogers, Appl. Phys. Lett. 74, 3386 (1999).

    Article  ADS  Google Scholar 

  16. Complete switching experiment differ from FMR measurements where a small (as compared to the intrinsic fields) RF excitation causes precession of the magnetic moments around a constant effective field composed of internal and external field

    Google Scholar 

  17. contributions [G. T. Rado, J. Appl. Phys. 32, 129 (1960)]. In FMR the magnetization vector decribes a coherent precessional motion around the saturation magnetization direction. Thus we might expect different damping behavior as compared to complete switching experiments where non uniform local magnetization structures develop.13

    Article  Google Scholar 

  18. H. C. Siegmann, E. L. Garwin, C. Y. Prescott, J. Heidmann, D. Mauri, D. Weiler, R. Allenspach, and W. Weber, J. Magn. Magn. Mat. ,151, L8 (1995).

    Article  ADS  Google Scholar 

  19. C. H. Back, D. Weiler, J. Heidmann, D. Mauri, D. Guarisco, E. L. Garwin, and H. C. Siegmann, Phys. Rev. Lett. 81, 3251 (1998).

    Article  ADS  Google Scholar 

  20. C. H. Back, R. Allenspach, W. Weber, S. S. P. Parkin, D. Weller, E. L. Garwin, and H. C. Siegmann, Science 285, 864 (1999).

    Article  Google Scholar 

  21. C. H. Back, and H. C. Siegmann, J. Magn. Magn. Mat. 200, 774 (1999).

    Article  ADS  Google Scholar 

  22. H. B. Callen, International Symposium on the Theory of Switching, Harvard University, April 1957, V1 and V2, 179 (1957).

    Google Scholar 

  23. L. He and W. D. Doyle, J. Appl. Phys. 79, 6489 (1996).

    Article  ADS  Google Scholar 

  24. Values for Tsl. are found to lie in the 100 ps range. A. Vaterlaus, T. Beutler, D. Guarisco, M. Lutz, and F. Meier, Phys. Rev. B 46, 5280, (1992).

    Article  ADS  Google Scholar 

  25. A. Scholl, L. Baumgarten, R. Jacquemin, and W. Eberhardt, Phys. Rev. Lett. 79, 5146 (1997) and references therein.

    Article  ADS  Google Scholar 

  26. D. Oberli, R. Burgermeister, S. Riesen, W. Weber, and H. C. Siegmann, Phys. Rev. Lett. 81, 4228 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Back, C.H. (2001). The Role of Damping in Ultrafast Magnetization Reversal. In: Morán-López, J.L. (eds) Physics of Low Dimensional Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-47111-6_37

Download citation

  • DOI: https://doi.org/10.1007/0-306-47111-6_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0571-3

  • Online ISBN: 978-0-306-47111-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics