Skip to main content

Nanodots and Nanowires of Silicon

  • Chapter
Physics of Low Dimensional Systems
  • 487 Accesses

Abstract

When the size of silicon is reduced towards the nanometer range, new properties emerge due to a dramatic change in bonding conditions, and due to electron and hole state quantization. Bulk silicon is characterized by diamond-type crystal structure, with sp 3-hybridization and 4-fold coordination. With decreasing size, silicon undergoes a phase change to a more close-packed atomic arrangement, which characterizes atomic and electronic structures of small Si clusters. In order to study size-dependent properties of silicon nanoparticles, we apply scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). For silicon clusters we determine the energy gap as a function of size. We show that pristine silicon particles show a major transition in their electronic properties at about 15 Å. We find that by vapor-condensation in UHV, silicon is also able to form quasi-one-dimensional structures. Nanowires with diameters from 3 nm to 7 nm, more than 100 nm long were produced. Considering the calculated free energies and band gaps for several possible wire structures we suggest that silicon nanowires tend to grow with a fullerene-type Si24-based core structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Van Rossum, Mater. Sci. Eng. 20, 128 (1993).

    Article  Google Scholar 

  2. F. A. Buot, Phys. Reports 234, 1 (1993).

    Article  Google Scholar 

  3. K. F. Goser, C. Pacha, and M. L. Rossmann, Proc. IEEE 85, 558 (1997).

    Article  Google Scholar 

  4. H. L. Hartnagel, R. Richter, and A. Grub, Electronics and Communications Engineering Journal 3, 119 (1991).

    Article  Google Scholar 

  5. G. W. Bryant, Phys. Rev. B 40, 1620 (1989).

    Article  ADS  Google Scholar 

  6. N. Blanc, P. Gueret, and R. Germann, Physica B 189, 135 (1993).

    Article  ADS  Google Scholar 

  7. M. Lonfat, B. Marsen, and K. Sattler, Chem. Phys. Lett. 313, 539–543 (1999).

    Article  ADS  Google Scholar 

  8. G. Chen, G. Klimeck, I. I. I. Goddard, and A. William, Phys. Rev. B 50, 8035 (1994).

    Article  ADS  Google Scholar 

  9. T. A. Burr, A. A. Seraphin, and K. D. Kolenbrander, Phys. Rev. B 56, 4818 (1997).

    Article  ADS  Google Scholar 

  10. Cluster Assembled Materials; Vol. 232, edited by K. Sattler (Trans. Tech. Publications, Zuerich, 1997).

    Google Scholar 

  11. B. Marsen and K. Sattler, Phys. Rev. B 60 (1999).

    Google Scholar 

  12. N. T. Bagraev, E. T. Chaikina, and A. M. Malyarenko, Solid-State Electron 42, 1199 (1998).

    Article  ADS  Google Scholar 

  13. B. Li, D. Yu, and S.-L. Zhang, Phys. Rev. B 59, 1645 (1999).

    Article  ADS  Google Scholar 

  14. V. Ng, H. Ahmed, and T. Shimada, Appl. Phys. Lett. 73, 972 (1998).

    Article  ADS  Google Scholar 

  15. J. Westwater, D. P. Gosain, and S. Usui, Phys. Stat. Solidi A 165, 37 (1998).

    Article  ADS  Google Scholar 

  16. M. F. Crommie, C. P. Lutz, and D. M. Eigler, Phys. Rev. B 48, 2851 (1993).

    Article  ADS  Google Scholar 

  17. J. C. Phillips, J. Chem. Phys. 83, 3330 (1985).

    Article  ADS  Google Scholar 

  18. S. Saito, S. Ohnishi, and S. Sugano, Phys. Rev. B 33, 7036 (1986).

    Article  ADS  Google Scholar 

  19. K. Raghavachari, J. Chem. Phys. 84, 5672 (1986).

    Article  ADS  Google Scholar 

  20. G. Pacchioni and J. Koutecky, J. Chem,. Phys. 84, 3301 (1986).

    Article  ADS  Google Scholar 

  21. R. Biswas and D. R. Hamann, Phys. Rev. B. 36, 6434 (1987).

    Article  ADS  Google Scholar 

  22. U. Roethlisberger, W. Andreoni, and M. Parrinello, Phys. Rev. Lett. 72, 665 (1994).

    Article  ADS  Google Scholar 

  23. D. Tomanek and M. A. Schlueter, Phys. Rev. Lett. 56, 1055 (1986).

    Article  ADS  Google Scholar 

  24. D. Tomanek and M. A. Schlueter, Phys. Rev. B 36, 1208 (1987).

    Article  ADS  Google Scholar 

  25. K. Balasubramanian, Chem. Phys. Lett ,135, 283 (1987).

    Article  ADS  Google Scholar 

  26. P. Ballone, W. Andreoni, R. Car, and M. Parrinello, Phys. Rev. Lett. 60, 271 (1988).

    Article  ADS  Google Scholar 

  27. J. R. Chelikowsky, Phys. Rev. Lett. 60, 2669 (1988).

    Article  ADS  Google Scholar 

  28. X. G. Gong, Phys. Rev. B 52, 14677 (1995).

    Article  ADS  Google Scholar 

  29. K. M. Ho, A. A. Shvartsburg, B. Pan, Z.-Y. Lu, C.-Z. Wang, J. G. Wacker, J. L. Fye, and M. F. Jarrold, Nature 392, 582 (1998).

    Article  ADS  Google Scholar 

  30. D. A. Jelski, B. L. Swift, and T. T. Rantala, J. Chem. Phys. 95, 8552 (1991).

    Article  ADS  Google Scholar 

  31. E. Kaxiras and K. Jackson, Phys. Rev. Lett. 71, 727 (1993).

    Article  ADS  Google Scholar 

  32. A. M. Mazzone, Phys. Rev. B 54, 5970 (1996).

    Article  ADS  Google Scholar 

  33. J. R. Chelikowsky, K. Glassford, and J. C. Phillips, Phys. Rev. B 44, 1538 (1991).

    Article  ADS  Google Scholar 

  34. M. F. Jarrold and V. A. Constant, Phys. Rev. Lett. 67, 2994 (1991).

    Article  ADS  Google Scholar 

  35. K. Fuke, K. Tsukamoto, and F. Misaizu, J. Chem. Phys. 99, 7807 (1993).

    Article  ADS  Google Scholar 

  36. H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, and T. Nakagiri, Appl. Phys. Lett. 56, 2379 (1990).

    Article  ADS  Google Scholar 

  37. L. T. Canham, Appl. Phys. Lett ,57, 1046 (1990).

    Article  ADS  Google Scholar 

  38. L.-W. Wang and A. Zunger, J. Phys. Chem ,98, 2158 (1994).

    Article  Google Scholar 

  39. H. Yorikawa, H. Uchida, and S. Muramatsu, J. Appl. Phys. 79, 3619 (1996).

    Article  ADS  Google Scholar 

  40. A. Kux and M. B. Chorin, Phys. Rev. B 51, 17535 (1995).

    Article  ADS  Google Scholar 

  41. M. Hirao and T. Uda, Surf. Sci. 306, 87 (1994).

    Article  ADS  Google Scholar 

  42. L. E. Brus, P. F. Szajowski, W. L. Wilson, T. D. Harris, S. Schuppler, and P. H. Citrin, J. Am. Chem. Soc. 117, 2915 (1995).

    Article  Google Scholar 

  43. L. N. Dinh, L. L. Chase, M. Balooch, W. J. Siekhaus, and F. Wooten, Phys. Rev. B 54, 5029 (1996).

    Article  ADS  Google Scholar 

  44. S. S. Iyer and Y. H. Xie, Science 260, 40 (1993).

    Article  ADS  Google Scholar 

  45. T. van Bimren, L. N. Dinh, L. L. Chase, W. J. Siekhaus, and L. J. Terminello, Phys. Rev. Lett. 80, 3803 (1998).

    Article  ADS  Google Scholar 

  46. A. Sieck, D. Porezag, and K. Jackson, Phys. Rev. A 56, 4890 (1997).

    Article  ADS  Google Scholar 

  47. E. Kaxiras, in Cluster Assembled Materials; Vol. 232, edited by K. Sattler (TransTech Publications, Zurich, 1996), p. 67.

    Google Scholar 

  48. P. Melinon, P. Keghelian, B. Prevel, A. Perez, G. Guiraud, J. LeBrusq, J. Lerme, M. Pellarin, and M. Broyer, J. Chem. Phys. 107, 10278 (1997).

    Article  ADS  Google Scholar 

  49. J. A. Stroscio, R. M. Feenstra, and A. P. Fein, Phys. Rev. Lett. 57, 2579 (1986).

    Article  ADS  Google Scholar 

  50. H. I. Liu, D. K. Biegelsen, F. A. Ponce, N. M. Johnson, and R. F. W. Pease, Appl. Phys. Lett. 64, 1383 (1994).

    Article  ADS  Google Scholar 

  51. H. Namatsu, Y. Takahashi, M. Nagase, and K. Murase, J. Vac. Sci. Technol. B 13, 2166 (1995).

    Article  Google Scholar 

  52. M. Gotza, B. Saint-Cricq, and P.-H. Jouneau, Microelectron. Eng. 27, 129 (1995).

    Article  Google Scholar 

  53. A. G. Nassiopoulos, S. Grigoropoulos, and D. Papadimitriou, Thin Solid Films 297, 176 (1997).

    Article  ADS  Google Scholar 

  54. Y. Shi, J. L. Liu, F. Wang, Y. Lu, R. Zhang, S. L. Gu, P. Han, L. Q. Hu, Y. D. Zheng, C. Y. Lin, and D. A. Du, J. Vac. Sci. Technol. A 14, 1194 (1996).

    Article  ADS  Google Scholar 

  55. J. L. Liu, Y. Shi, and Y. D. Zheng, J. Vac. Sci. Technol. B 13, 2137 (1995).

    Article  Google Scholar 

  56. A. M. Morales and C. M. Lieber, Science 279, 208 (1998).

    Article  ADS  Google Scholar 

  57. J. J. P. Stewart, J. Comput. Chem. 10, 221 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Sattler, K. (2001). Nanodots and Nanowires of Silicon. In: Morán-López, J.L. (eds) Physics of Low Dimensional Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-47111-6_20

Download citation

  • DOI: https://doi.org/10.1007/0-306-47111-6_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0571-3

  • Online ISBN: 978-0-306-47111-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics