Skip to main content

Spin-Polarized Electrons and Magnetism 2000

  • Chapter
Physics of Low Dimensional Systems

Abstract

The spin polarization P of the electron states of a ferromagnet is obtained from photoemission experiments provided one corrects for the spinfiltering in the transport of the photoexcited electrons to the surface. It turns out that there exist two types of ferromagnetic metal: one with positive P at the Fermi energy E f (Fe, Gd, La0.7Sr0.3MnO3 … ) and the other with negative P(Ef) (Ni, Co, Fe3O4 …) This together with progress in understanding the role of the metal-oxide interface in determining the spin polarization of the current through magnetic tunnel junctions makes possible the injection of polarized electron currents of either sign from ferromagnetic emitters into quantum wells, insulators, or other ferromagnetic metals leading to a wealth of new insight as well as applications such as realized in GMR-(Giant magnetoresistance) and TMR-(Tunneling magnetic resistance) devices. Generally, in such spin electronics, the electric currents are manipulated through the spin state of the electrons. Basic to the understanding of spin electronics as well as electron emission from solids is the understanding of the spin attenuation in transport of the electrons. We have performed two different experiments to elucidate the underlying spin dependent electron-electron scattering. In the first experiment, the electrons are excited with a femtosecond laser pulse and their spin dependent relaxation is observed via a subsequent laser pulse inducing photoemission. In the second experiment, spin-polarized electrons from a GaAs-type of electron source are injected into a ferromagnetic film and their absorption and spin rotation is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. F. Mott and H. Iones, The theory of the properties of metals and alloys (Dover Publ., New York 1958).

    Google Scholar 

  2. A. Fert and I. A. Campbell, Phys. Rev. Lett 21, 1190 (1968).

    Article  ADS  Google Scholar 

  3. M. Plihal, D. L. Mills, and J. Kirschner, Phys. Rev. Lett. 82, 2597 (1999).

    Article  ADS  Google Scholar 

  4. R. Coehoorn, Europhys. News 24, 43 (1993), and references cited.

    Google Scholar 

  5. J. M. De Teresa, A. Barthelemy, A. Fert, J. P. Contour, R. Lyonnet, F. Montaigne, P. Seneor, and A. Vaures, Phys. Rev.Lett. 82, 4288 (1999)

    Article  ADS  Google Scholar 

  6. J. M. De Teresa, A. Barthelemy, A. Fert, J. P. Contour, R. Lyonnet, F. Montaigne, P. Seneor, and A. Vaures, Science 286 507 (1999), and references cited.

    Article  Google Scholar 

  7. P. M. Tedrow and R. Meservey, Phys.Rev. Lett. 26, 192 (1971).

    Article  ADS  Google Scholar 

  8. E. S. Dayhoff, J. Appl. Phys. 30, 234S (1959).

    Article  ADS  Google Scholar 

  9. H. A. Fowler and L. Marton, Bull. Amer. Phys. Soc. 4, 235 (1959).

    Google Scholar 

  10. R. L. Long Jr., V. W. Hughes, and J. S. Greenberg, Phys. Rev. A 138, 1630 (1965).

    Article  ADS  Google Scholar 

  11. A. B. Baganov and D. B. Diatroptov, Sov. Phys. JETP 27, 1733 (1968).

    Google Scholar 

  12. N. Müller, H. C. Siegmann, and G. Obermair, Phys. Lett. 24A, 733 (1967).

    Article  ADS  Google Scholar 

  13. U. Bänninger, G. Busch, M. Campagna, and H. C. Siegmann, Phys. Rev. Lett. 25, 585 (1970).

    Article  ADS  Google Scholar 

  14. W. Eib and S. F. Alvarado, Phys. Rev. Lett. 37, 444 (1976).

    Article  ADS  Google Scholar 

  15. E. Kisker, W. Goudat, M. Campagna, E. Kuhlmann, H. Hopster, and I. D. Moore, Phys. Rev. Lett. 43, 966 (1979).

    Article  ADS  Google Scholar 

  16. P. Aebi, T. J. Kreutz, J. Osterwalder, R. Fasel, P. Schwaller, and L. Schlapbach, Phys. Rev. Lett. 76, 1150 (1996), and references cited.

    Article  ADS  Google Scholar 

  17. G. Busch, M. Campagna, D. T. Pierce, and H. C. Siegmann, Phys. Rev. Lett. 28, 611 (1972).

    Article  ADS  Google Scholar 

  18. H. C. Siegmann, Surface Sci. 307–309), 1076–1086 (1994).

    Article  Google Scholar 

  19. D. Oberli, R. Burgermeister, S. Riesen, W. Weber, and H. C. Siegmann, Phys. Rev. Lett. 81, 4228 (1998).

    Article  ADS  Google Scholar 

  20. J. C. Gröbli, A. Kündig, F. Meier, and H. C. Siegmann, Physica B 204, 359 (1995).

    Article  ADS  Google Scholar 

  21. M. Campagna, D. T. Pierce, K. Sattler, and H. C. Siegmann, J. de Physique 34, C6 87 (1973)

    Google Scholar 

  22. S. F. Alvarado, W. Eib, F. Meier, D. T. Pierce, K. Sattler, and H. C. Siegmann, Phys. Rev. Lett. 34, 319 (1975)

    Article  ADS  Google Scholar 

  23. S. F. Alvarado, W. Eib, H. C. Siegmann, and J. P. Remeika, Phys. Rev. Lett. 35, 860 (1975).

    Article  ADS  Google Scholar 

  24. S. F. Alvarado and P. Renaud, Phys. Rev. Lett. 68, 1387 (1992).

    Article  ADS  Google Scholar 

  25. S. F. Alvarado, Phys. Rev. Lett. 75, 513 (1995).

    Article  ADS  Google Scholar 

  26. M. Landolt and M. Campagna, Phys. Rev. Lett. 38, 663 (1977).

    Article  ADS  Google Scholar 

  27. W. Gleich, G. Regenfus, and R. Sizman, Phys. Rev. Lett. 22, 1066 (1971).

    Article  ADS  Google Scholar 

  28. R. Wiesendanger, H. -J. Güntherodt, G. Gntherodt, R. J. Gambino, and R. Ruf, Phys. Rev. Lett. 65, 247(1990).

    Article  ADS  Google Scholar 

  29. R. Meservey and P. M. Tedrow, Physics Reports 238, 173 (1994).

    Article  ADS  Google Scholar 

  30. J. Mathon and A. Umerski, Phys. Rev. B 60, 1117 (1999).

    Article  ADS  Google Scholar 

  31. Jagadeesh S. Moodera, Janusz Nowak, Lisa R. Kinder, and Paul M. Tedrow, Phys. Rev. Lett. 83, 3029 (1999).

    Article  ADS  Google Scholar 

  32. E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrmann, Science 285, 867 (1999).

    Article  Google Scholar 

  33. M. Aeschlimann, M. Bauer, S. Pawlik, W. Weber, R. Burgermeister, D. Oberli, and H. C. Siegmann, Phys. Rev. Lett. 79, 5158 (1997).

    Article  ADS  Google Scholar 

  34. W. Weber, D. Oberli, S. Riesen, and H. C. Siegmann, New J. of Phys. 1, 9.1–9.6 (1999).

    Article  ADS  Google Scholar 

  35. D. T. Pierce, J. Unguris, R. J. Celotta, and M. D. Stiles, these Proceedings, p. 301.

    Google Scholar 

  36. F. Marty, C. Stamm, U. Maier, U. Ramsperger, and A. Vaterlaus, these Proceedings, p. 335.

    Google Scholar 

  37. G. Schönhense, these Proceedings, p. 309.

    Google Scholar 

  38. Boris Sinkovic, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Siegmann, H.C. (2001). Spin-Polarized Electrons and Magnetism 2000. In: Morán-López, J.L. (eds) Physics of Low Dimensional Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-47111-6_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-47111-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0571-3

  • Online ISBN: 978-0-306-47111-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics