Skip to main content

Conclusion

Models for nanofibers of amorphous polymers can be constructed by manipulation of the periodic boundary conditions commonly employed in the simulations of polymer melts. After a strong extension of the periodicity in one direction, equilibration causes the model to form a free-standing thin film. Repetition of this process with the boundary in a different direction converts the free-standing thin film into a thin fiber, exposed to a vacuum. For a successful construction of the model for the fiber, the system must be sufficiently robust, in terms of the degree of polymerization and number of the independent parent chains. The length of the periodic box along the fiber axis can exceed the length of a fully extended parent chain if a sufficiently large number of independent parent chains is employed in the simulation. The correlation length, ΞΎ, in the fit of the radial density profile to a hyperbolic tangent function is a useful indicator of the integrity of the model for the thin fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Baschnagel, K. Binder, P. Doruker, A. A. Gusev, O. Hahn, K. Kremer, W. L. Mattice, F. Muller-Plathe, M. Murat, W. Paul, S. Santos, U. W. Suter, and V. Tries, Bridging the gap between atomistic and coarse-grained models of polymers: Status and perspectives, Adv. Polym. Sci., in press.

    Google ScholarΒ 

  2. R. F. Rapold and W. L. Mattice, Introduction of short and long range energies to simulate real chains on the 2nnd lattice, Macromolecules 29:2457(1996).

    ArticleΒ  CASΒ  Google ScholarΒ 

  3. J. Cho and W. L. Mattice, Estimation of long-range interaction in coarse-grained rotational isomeric state polyethylene chains on a high coordination lattice, Macromolecules 30:637(1997).

    ArticleΒ  CASΒ  Google ScholarΒ 

  4. P. Doruker and W. L. Mattice, Reverse mapping of coarse grained polyethylene chains from the second nearest neighbor diamond lattice to an atomistic model in continuous space, Macromolecules 30:5520 (1997).

    ArticleΒ  CASΒ  Google ScholarΒ 

  5. R. F. Rapold and W. L. Mattice, New high-coordination lattice model for rotational isomeric state polymer chains, J. Chem. Soc., Faraday Trans. 91:2435(1995).

    ArticleΒ  CASΒ  Google ScholarΒ 

  6. P. Doruker and W. L. Mattice, Dynamics of bulk polyethylene on a high coordination lattice, Macromol. Symp. 133:47(1998).

    CASΒ  Google ScholarΒ 

  7. R. Ozisik, P. Doruker, E. D. von Meerwall, and W. L. Mattice, Translational diffusion in Monte Carlo simulations of polymer melts: Center of mass displacement vs. integrated velocity autocorrelation function, Comput. Theor. Polym. Sci., submitted.

    Google ScholarΒ 

  8. T. Haliloglu and W. L. Mattice, Mapping of rotational isomeric state chains with asymmetric torsional potential energy functions on a high coordination lattice: Application to polypropylene, J. Chem. Phys. 108:6989(1998).

    CASΒ  Google ScholarΒ 

  9. T. Haliloglu, J. Cho, and W. L. Mattice, Simulations of rotational isomeric state models for poly(propylene) melts on a high coordination lattice, Macromol. Theory Simul. 7:613(1998).

    CASΒ  Google ScholarΒ 

  10. T. Haliloglu and W. L. Mattice, Detection of the onset of demixingin simulations of polypropylene melts in which the chains differ only in stereochemical composition, J. Chem. Phys. 111:4327(1999).

    ArticleΒ  CASΒ  Google ScholarΒ 

  11. P. Doruker and W. L. Mattice, A second generation of mapping/reverse mapping of coarse-grained and fully atomistic models of polymer melts, Macromol. Theory Simul. 8:463(1999).

    ArticleΒ  CASΒ  Google ScholarΒ 

  12. P. J. Flory. Statistical Mechanics of Chain Molecules, Wiley, New York (1969).

    Google ScholarΒ 

  13. W. L. Mattice and U. W. Suter. Conformational Properties of Large Molecules. The Rotational Isomeric State Model in Macromolecular Systems, Wiley, New York (1994).

    Google ScholarΒ 

  14. A. Abe, R. L. Jernigan, and W. L. Mattice, Conformational energies of n-alkanes and the random configuration of higher homologues including polymethylene, J. Am. Chem. Soc. 88:631 (1966).

    CASΒ  Google ScholarΒ 

  15. U. W. Suter, S. Pucci, and P. Pino, The epimerization of 2,4,6,8-tetramethylnonane and 2,4,6,8,10-pentamethylundecane, low molecular weight model compounds of polypropylene, J. Am. Chem. Soc. 97:1018(1975).

    ArticleΒ  CASΒ  Google ScholarΒ 

  16. J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird. Molecular Theory of Gases and Liquids, Wiley, New York (1954).

    Google ScholarΒ 

  17. J. Prausnitz. Molecular Thermodynamics of Fluid-Phase Equilibrium, Prentice Hall, Inc., Englewood Cliffs, New Jersey (1986).

    Google ScholarΒ 

  18. N. Metropolis, A. W. Rosenbluth, A. H. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21:1087(1953).

    ArticleΒ  CASΒ  Google ScholarΒ 

  19. S. Misra, P. D. Fleming III, and W. L. Mattice, Structure and energy of thin films of poly(1,4-cis-butadiene): A new atomistic approach, J. Comput.-Aided Matter. Des. 2:101 (1995).

    CASΒ  Google ScholarΒ 

  20. P. Doruker and W. L. Mattice, Simulation of polyethylene thin films on a high coordination lattice, Macromolecules 31:1418 (1998).

    ArticleΒ  CASΒ  Google ScholarΒ 

  21. P. Doruker and W. L. Mattice, Segregation of chain ends is a weak contributor to increased mobility at free polymer surfaces, J. Phys. Chem. B 103:178(1999).

    ArticleΒ  CASΒ  Google ScholarΒ 

  22. K. F. Mansfield and D. N. Theodorou, Atomistic simulation of a glassy polymer surface, Macromolecules 23:4430 (1990).

    ArticleΒ  CASΒ  Google ScholarΒ 

  23. K. F. Mansfield and D. N. Theodorou, Molecular dynamics simulation of a glassy polymer surface, Macromolecules 24:6283 (1991).

    CASΒ  Google ScholarΒ 

  24. P. Doruker and W. L. Mattice, Mobility of the surface and interior of thin films composed of amorphous polyethylene, Macromolecules 32:194 (1999).

    ArticleΒ  CASΒ  Google ScholarΒ 

  25. J. H. Jang and W. L. Mattice, Time scales for three processes in the interdiffusion across interfaces, Polymer 40:1911 (1999).

    CASΒ  Google ScholarΒ 

  26. J.H. Jang and W. L. Mattice, The effect of solid wall interactions on an amorphous polyethylene thin film, using a Monte Carlo simulation on a high coordination lattice, Polymer 40:4685 (1999).

    CASΒ  Google ScholarΒ 

  27. J. H. Jang and W. L. Mattice, A Monte Carlo simulation for the effect of compression of an amorphous polyethylene melt in very thin confined geometry, Macromolecules 33:1467 (2000).

    CASΒ  Google ScholarΒ 

  28. V. Vao-soongnern, P. Doruker, and W. L. Mattice, Simulation of an amorphous polyethylene nanofiber on a high coordination lattice, Macromol. Theory Simul. 9:1 (2000).

    CASΒ  Google ScholarΒ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Β© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Vao-soongnern, V., Doruker, P., Mattice, W.L. (2002). Simulations of Thin Films and Fibers of Amorphous Polymers. In: Dadmun, M.D., Van Hook, W.A., Noid, D.W., Melnichenko, Y.B., Sumpter, B.G. (eds) Computational Studies, Nanotechnology, and Solution Thermodynamics of Polymer Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-47110-8_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-47110-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46549-9

  • Online ISBN: 978-0-306-47110-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics