Skip to main content

Imaging with a 2D Transducer Hybrid Array

  • Chapter
Acoustical Imaging

Part of the book series: Acoustical Imaging ((ACIM,volume 24))

  • 340 Accesses

Abstract

Imaging with fully populated 2D arrays using acoustical lenses in the low MHz frequency range offers the potential for high resolution, real-time, 3D volume imaging together with low power and low cost. A 2D composite piezoelectric receiver array bonded directly to a large custom integrated circuit was discussed1 at the 23rd International Symposium on Acoustical Imaging. This 128 × 128 (16,384 total) element Transducer Hybrid Array (THA) uses massively parallel, on-chip signal processing and is intended for medical and underwater imaging applications. The system under development, which is a direct analog of a video camera, will be discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Erikson et al, “A 128 × 128 (16k) Ultrasonic Transducer Hybrid Array”, in Acoustical Imaging, Vol. 23, ed. Lees & Ferrari, Plenum Press, New York, pp. 485–494, 1997.

    Google Scholar 

  2. Bruce Johnson, NAVEODTECHDIV, Indian Head, MD, Personal Communication.

    Google Scholar 

  3. R.J. Urick, Principles of Underwater Sound, McGraw-Hill, New York, 1983, Ch.2.

    Google Scholar 

  4. D. Sette, “Ultrasonic Lenses of Plastic Materials”, J. Acoust. Soc. Am., vol. 21, pp. 375–381, 1949.

    Google Scholar 

  5. D.L. Folds, “Focusing Properties of Solid Ultrasonic Cylindrical Lenses”, J. Acoust. Soc. Am., vol. 53, pp. 826–834, 1973.

    Google Scholar 

  6. Y. Tannaka & T. Koshikawa, “Solid-Liquid Compound Hydroacoustic Lens of Low Aberration”, J. Acoust. Soc. Am., vol. 53, pp. 590–595, 1973.

    Article  Google Scholar 

  7. H.W. Jones & C.J. Williams, “Lenses and Ultrasonic Imaging”, in Acoustical Holography, Vol. 7, ed. L.W. Kessler, Plenum Press, NY, pp. 133–153, 1977.

    Google Scholar 

  8. B. Kamgar-Parsi, B. Johnson, D.L. Folds & E. Belcher, “High-Resolution Underwater Acoustic Imaging with Lens-Based Systems”, Int. J. Imaging Syst. Technol., vol. 8, pp. 377–385, 1997.

    Article  Google Scholar 

  9. D. Phillips, X. Chen, C. Raeman, K. Parker, “Acoustic Lens Characterization in a Scattering Medium — Summary Report”, Univ. of Rochester, Rochester, NY, 18 March, 1996.

    Google Scholar 

  10. T.R. Gururaja, W.A. Schulze, L.E. Cross, R.E. Newham, B.A. Auld & Y.J. Wang, “Piezoelectric composite materials for ultrasonic transducer applications. Part I: Resonant modes of vibration of PZT rod-polymer composites”, IEEE Trans. Ultrason. Ferroelec. Freq. Control, vol. 32, pp. 481–498, 1985.

    Google Scholar 

  11. W. A. Smith & B. A. Auld, “Modeling 1–3 Composite Piezoelectrics: Thickness-Mode Oscillations”, IEEE Trans. Ultrason. Ferroelec. Freq. Control, vol.38, pp. 40–47, 1991.

    Google Scholar 

  12. D.H. Turnbull & F.S. Foster, “Fabrication and Characterization of Transducer Elements in Two-Dimensional Arrays for Medical Ultrasound Imaging”, IEEE Trans. Ultrason. Ferroelec. Freq. Control, vol. 39, pp. 464–474, 1992.

    Google Scholar 

  13. G. Wojcik, C. Desilets, L. Nikodym, D. Vaughn, N. Abboud and J. Mould, “Computer Modeling of Diced Matching Layers”, in IEEE Ultrason. Symp., 1996, pp. 1503–1508.

    Google Scholar 

  14. S.J. Klapman, “Interaction Impedance of a System of Circular Pistons”, J. Acoust. Soc. Am., vol. 11, pp. 289–295, 1940.

    Article  Google Scholar 

  15. C.H. Sherman, “Mutual Radiation Impedance of Sources on a Sphere”, J. Acoust. Soc. Am., vol. 31, pp. 947–952, 1959.

    Article  Google Scholar 

  16. Piezo CAD, Sonic Concepts, Woodinville, WA, 98072.

    Google Scholar 

  17. G.L. Wojcik, D.K. Vaughn, V. Murray & J. Mould, “Time-Domain Modeling of Composite Arrays for Underwater Imaging”, in IEEE Ultrason. Symp., 1994, pp. 1027–1032.

    Google Scholar 

  18. I. Ladabaum, X. Jin, H.T. Soh, F. Pierre, A. Atalar & B.T. Khuri-Yakub, “Microfabricated Ultrasonic Transducers: Towards Robust Models and Immersion Devices”, in IEEE Ultras. Symp., 1996, pp. 335–338.

    Google Scholar 

  19. J. Bernstein, S. Finberg, K. Houston, L. Niles, H. Chen, L. Cross, K. Li, K. Udayakumar, “Integrated Ferroelectric Monomorph Transducers for Acoustic Imaging”, Integrated Ferroelectrics, vol. 15, pp. 289–307, 1997.

    Google Scholar 

  20. “BAA 97-33 Sonoelectronics”, Defense Advanced Research Projects Agency (DARPA), Arlington, VA 22203, July 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Erikson, K. et al. (2002). Imaging with a 2D Transducer Hybrid Array. In: Lee, H. (eds) Acoustical Imaging. Acoustical Imaging, vol 24. Springer, Boston, MA. https://doi.org/10.1007/0-306-47108-6_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-47108-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46518-5

  • Online ISBN: 978-0-306-47108-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics