Skip to main content

Towards a Complete Experiment for Auger Decay

  • Chapter
Complete Scattering Experiments

Part of the book series: Physics of Atoms and Molecules ((PAMO))

  • 173 Accesses

Abstract

A new method for performing a complete experiment in the case of the Auger decay is considered. The method assumes the LSJ-coupling approximation and is based on measurements of the relative intensities and the angular distribution of the Auger electrons. The method can be used for Auger transitions from states with nonvanishing spin S and orbital angular momentum L if the fine structure levels J f of the final ionic state are resolved. As example, for the Auger decay Na + (2 s 2 p 6 4 p 3 P) → Na 2+ (2 s 2 2 p 5 2 P 3/2 ,2 P 1/2 )+e Auger the absolute ratio of decay amplitudes and their relative phase are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Heinzmann, J. Phys. B: At. Mol. Opt. Phys. 13, 4353 (1980).

    Article  ADS  Google Scholar 

  2. J. B. West, K. J. Ross, and H. J. Beyer, J. Phys. B: At. Mol. Opt. Phys. 31, L647 (1998).

    Article  ADS  Google Scholar 

  3. K. Ueda et al., J. Phys. B: At. Mol. Opt. Phys. 31, 4801 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  4. A. N. Grum-Grzhimailo, A. Dorn, and W. Mehlhorn, Comm. At. Mol. Phys. Comm. Mod. Phys. D 1, 29 (1999).

    Google Scholar 

  5. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  ADS  MATH  Google Scholar 

  6. S. A. Sheinerman, W. Kuhn, and W. Mehlhorn, J. Phys. B: At. Mol. Opt. Phys. 27, 5681 (1994).

    Article  ADS  Google Scholar 

  7. N. M. Kabachnik and I. P. Sazhina, J. Phys. B: At. Mol. Opt. Phys. 23, L353 (1990).

    Article  ADS  Google Scholar 

  8. E. G. Berezhko, N. M. Kabachnik, and V. V. Sizov, J. Phys. B: At. Mol. Opt. Phys. 11, 1819 (1978).

    Article  ADS  Google Scholar 

  9. H. Klar, J. Phys. B: At. Mol. Opt. Phys. 13, 4741 (1980).

    Article  ADS  Google Scholar 

  10. H. Merz and J. Semke, in X-Ray and Inner Shell Processes, American Inst. Phys., edited by T. A. Carlson, M. O. Krause, and S. T. Manson (AIP Conference Proceedings 215, New York, 1990), pp. 719–728.

    Google Scholar 

  11. G. Snell et al., Phys. Rev. Lett. 76, 3923 (1996).

    Article  ADS  Google Scholar 

  12. A. N. Grum-Grzhimailo and W. Mehlhorn, J. Phys. B: At. Mol. Opt. Phys. 30, L9 (1997).

    Article  ADS  Google Scholar 

  13. A. Dorn et al., J. Phys. B: At. Mol. Opt. Phys. 28, L225 (1995).

    Article  ADS  Google Scholar 

  14. A. Dorn, O. Zatsarinny, and W. Mehlhorn, J. Phys. B: At. Mol. Opt. Phys. 30, 2975 (1997).

    Article  ADS  Google Scholar 

  15. A. N. Grum-Grzhimailo and A. Dorn, J. Phys. B: At. Mol. Opt. Phys. 28, 3197 (1995).

    Article  ADS  Google Scholar 

  16. E. E. B. Campbell, H. Hülser, R. Witte, and I. V. Hertel, Z. Phys. D 16, 21 (1990).

    Article  ADS  Google Scholar 

  17. P. Strohmeier, Opt. Commun. 79, 187 (1990).

    Article  ADS  Google Scholar 

  18. A. Fischer and I. V. Hertel, Z. Phys. A 304, 103 (1982).

    Article  ADS  Google Scholar 

  19. A. Dorn et al., J. Phys. B: At. Mol. Opt. Phys. 27, L529 (1994).

    Article  ADS  Google Scholar 

  20. O. I. Zatsarinny, J. Phys. B: At. Mol. Opt. Phys. 28, 4759 (1995).

    Article  ADS  Google Scholar 

  21. K. Blum, Density Matrix Theory and Applications (Plenum Press, New York and London, 1981).

    Google Scholar 

  22. O. I. Zatsarinny, 1998, private communication.

    Google Scholar 

  23. G. Snell et al., Phys. Rev. Lett. 82, 2480 (1999).

    Article  ADS  Google Scholar 

  24. L. O. Werme, T. Bergmark, and K. Siegbahn, Phys. Scripta 6, 141 (1972).

    Article  ADS  Google Scholar 

  25. D. Ridder, J. Dieringer, and N. Stolterfoht, J. Phys. B: At. Mol. Opt. Phys. 9, L307 (1976).

    Article  ADS  Google Scholar 

  26. H. Aksela et al., Phys. Rev. A 55, 3532 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Grum-Grzhimailo, A.N., Dorn, A., Mehlhorn, W. (2002). Towards a Complete Experiment for Auger Decay. In: Becker, U., Crowe, A. (eds) Complete Scattering Experiments. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/0-306-47106-X_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-47106-X_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46503-1

  • Online ISBN: 978-0-306-47106-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics