Skip to main content

Dynamical Mean-Field Theory of Stripe Ordering

  • Chapter
Stripes and Related Phenomena

Part of the book series: Selected Topics in Superconductivity ((STIS,volume 8))

  • 357 Accesses

Abstract

Applying the dynamical mean-field theory to the two-dimensional Hubbard model, we calculate self-consistent solutions of doped antiferromagnets with spatially varying spin density ‹n › using realistic tight-binding parameters. The local self-energy of the supercell includes transverse and longitudinal spin fluctuations with an effective local potential due to short-range electron-electron correlations. It is found that metallic stripes are stabilized by a pseudogap. The stripes along (1,0) direction filled by one hole per two-domain wall unit cells change with increasing Coulomb interaction U to the more extended stripes along (1,1) direction consisting of four atoms filled by 1/4 doped hole each. These findings agree qualitatively with the experimental observations in the superconducting cuprates, and predict a qualitative difference between various compounds due to differences in the extended hopping parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Tranquada et al., Nature (London) 375, 561 (1995); J. M. Tranquada et al., Phys. Rev. Lett. 78, 338 (1997).

    Article  Google Scholar 

  2. J. Zaanen and O. Gunnarsson, Phys. Rev. B 40, 7391 (1989).

    Google Scholar 

  3. D. Poilblanc and T. M. Rice, Phys. Rev. B 39, 9749 (1989).

    Google Scholar 

  4. M. Inui and P. B. Littlewood, Phys. Rev. B 44, 4415 (1991).

    Article  Google Scholar 

  5. K. Machida, Physica C 158, 192 (1989).

    Article  CAS  Google Scholar 

  6. M. Ichimura et al., J. Phys. Soc. Jpn. 61, 2027 (1992).

    Article  Google Scholar 

  7. J. Zaanen and A. M. Oles, Ann. Phys. 6, 224 (19%).

    Google Scholar 

  8. S. R. White and D. J. Scalapino, Phys. Rev. Lett. 80, 1272 (1998).

    CAS  Google Scholar 

  9. P. Dai et al., Phys. Rev. Lett. 80, 1738 (1998).

    CAS  Google Scholar 

  10. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

    CAS  Google Scholar 

  11. A. Georges, G. Kotliar, G. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  CAS  Google Scholar 

  12. D. E. Logan, M. D. Eastwood, and M. A. Tusch, Phys. Rev. Lett. 76, 4785 (1996).

    Article  CAS  Google Scholar 

  13. M. Fleck et al., Phys. Rev. Lett. 80, 2393 (1998).

    Article  CAS  Google Scholar 

  14. L. Chen et al., Phys. Rev. Lett. 66, 369 (1991).

    Google Scholar 

  15. O. K. Andersen et al., J. Phys. Chem. Sol. 56, 1573 (1995); private communications.

    Article  CAS  Google Scholar 

  16. N. F. Berk and J. R. Schrieffer, Phys. Rev. Lett. 17, 433 (1966).

    Article  CAS  Google Scholar 

  17. M. H. Hettler et al., cond-mat/9803295.

    Google Scholar 

  18. G. Seibold, C. Castellani, C. Di Castro, and M. Grilli, cond-mat/9803184.

    Google Scholar 

  19. E. Dagotto and T. M. Rice, Science 271, 618 (1996).

    CAS  Google Scholar 

  20. S. R. White and D. J. Scalapino, Phys. Rev. 57, 3031 (1998).

    CAS  Google Scholar 

  21. N. Bulut et al., Phys. Rev. B 47, 2742 (1993).

    Google Scholar 

  22. E. Dagotto et al., Phys. Rev. B 46, 3183 (1992).

    Google Scholar 

  23. Z. G. Yu et al., Phys. Rev. B 57, R3241 (1998).

    CAS  Google Scholar 

  24. A. Singh and Z. Tešanović, Phys. Rev. B 41, 614 (1990); ibid. 41, 11457 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Plenum Publishers

About this chapter

Cite this chapter

Lichtenstein, A.I., Fleck, M., Oles, A.M., Hedin, L. (2002). Dynamical Mean-Field Theory of Stripe Ordering. In: Bianconi, A., Saini, N.L. (eds) Stripes and Related Phenomena. Selected Topics in Superconductivity, vol 8. Springer, Boston, MA. https://doi.org/10.1007/0-306-47100-0_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-47100-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46419-5

  • Online ISBN: 978-0-306-47100-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics