Skip to main content

Optical Sensors and Microsystems Using Liquid Crystals

  • Chapter
Optical Sensors and Microsystems

Conclusions

An overview of the basic properties of liquid crystals has been presented as an introduction to the subject of design and fabrication processes of optoelectronic LC devices.

Even besides the main application area of LC’s, namely displays, there has been a large and fruitful R&D activity aimed at the development of novel or advanced devices exploiting the peculiar properties of these materials. A number of sensors and optical modulators or switches have been demonstrated, that exhibit interesting characteristics.

Integration of liquid crystals in guided-wave structures leads to compact, efficient and reliable devices: further efforts, however, are necessary in order to optimize these microsystems, making them more performing and more rugged at the same time. An approach which seems promising to achieve higher performance is that of employing ferroelectric liquid crystals, which can exhibit much shorter response times than other LC’s. As to the ways of increasing ruggedness and compactness of LC devices, a viable route appears to be that of exploiting the characteristics of the polymer-dispersed LC’s: these composite materials, besides alleviating the alignment problems, lend themselves to an easy and convenient use in guided-wave structures. Their optical properties, however, still have to be deeply investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.G. de Gennes, The Physics of Liquid Crystals, Clarendon Press, Oxford (1974).

    Google Scholar 

  2. S. Chandrasekhar, Liquid Crystal, Cambridge Univ. Press, 2nd Ed. (1992).

    Google Scholar 

  3. T.W. Stinson and J.D. Lister, Pretransitional phenomena in the isotropic phase of a nematic liquid crystal, Phys. Rev. Lett. 25: 503 (1970).

    Article  ADS  Google Scholar 

  4. B. Jéròme, Surface effects and anchoring in liquid crystals, Rep. Prog. Phys. 54: 391 (1991).

    Article  ADS  Google Scholar 

  5. I.C. Khoo, and S.T. Wu, Optics and Nonlinear Optics of Liquid Crystal, Series in Nonlinear Optics, World Scientific, Singapore, (1993).

    Google Scholar 

  6. S.T. Wu, A semi-empirical model for liquid crystal refractive index dispersion, J. Appl. Phys. 69: 2080 (1991).

    Article  ADS  Google Scholar 

  7. N.A. Clark and S.T. Lagerwall, Submicrosecond bistable electro-optic switching in liquid crystals, Appl. Phys. Lett. 36: 899 (1980).

    Article  ADS  Google Scholar 

  8. G. Andersson, I. Dahl, P. Keller, W. Kucynski, S.T. Lagerwll, K. Skarp and B. Stebler, Submicrosecond electro-optic switching in the liquid crystal smectic A phase: the soft-mode ferroelectric effect, Appl. Phys Lett. 51: 640 (1987).

    Article  ADS  Google Scholar 

  9. E. Santamato and Y.R Shen, Liquid crystals for nonlinear optical studies, in: A Guide to Liquid Crystal Research, P. J. Collings and J. S. Patel as., Oxford Univ. Press (1996).

    Google Scholar 

  10. L. Marrucci and Y.R Shen, Nonlinear optics of liquid crystals, in: The Optics of Thermotropic Liquid Crystals, edited by R. Sambles e S. Elston, Taylor & Francis, London (1997).

    Google Scholar 

  11. I.C. Khoo, Nonlinear optics of liquid crystals, Progress in Optics XXVI: 107 (1988).

    Google Scholar 

  12. F. Simoni, Nonlinear optical phenomena in nematics, in Physics of Lliquid Crystals, Gordon & Breach, N.Y., (1989).

    Google Scholar 

  13. I.C. Khoo, and Y.R. Shen, Liquid crystals: nonlinear optical properties and processes, Opt. Eng., 24: 579 (1985).

    ADS  Google Scholar 

  14. I.C. Khoo and F. Simoni, Physics of Liquid Crystalline Materials, Gordon and Breach Science Publishers (1988).

    Google Scholar 

  15. J.W. Doane, N.A. Vaz, B.G. Wu and S. Zumer, Field controlled light scattering from nematic microdroplets, Appl. Phys. Lett. 48: 269 (1986).

    Article  ADS  Google Scholar 

  16. S. Zumer, Light scattering from nematic droplets: anomalous-diffraction approach, Phys. Rev. A 37: 4006 (1988).

    Article  ADS  Google Scholar 

  17. J. Beard, Liquid crystals take the temperature in tests, New Scientist (ISSN:0262479) 139: 20 (1993).

    ISI  Google Scholar 

  18. Liquid-crystal devices sense temperature, Laser Focus (ISSN:0740-2511) 23: 48 (1987).

    Google Scholar 

  19. A T Augousti, K.T.V. Grattan and A.W. Palmer, A liquid crystal fibre-optic temperature switch, J. Phys.E Sci. Instrum. 21: 817 (1988).

    Article  ADS  Google Scholar 

  20. A.T. Augousti and J. Mm, Temperature sensing using a hybrid optoelectronic multivibrating systm under full computer control, Meas. Sci.& Technol 5: 736 (1994).

    Article  ADS  Google Scholar 

  21. D.S. Parmar, A novel technique for response function determination of shear sensitive cholesteric liquid crystals for boundary layer investigation, Rev. Sci. Insuum. 62 1596 (1991).

    Article  ADS  Google Scholar 

  22. D.S. Parmar, A Novel boundary layer sensor utilizing domain switching in ferroelectric liquid crystals, Rev. Sci. Instrum. 62: 474 (1991).

    Article  ADS  Google Scholar 

  23. D.S. Parmar and J.J. Singh, Partially exposed polymer dispersed liquid crystals for boundary layer investigatims, Appl. Phys. Lett. 61: 2039 (1992).

    Article  ADS  Google Scholar 

  24. D.S. Parmar and H.K. Holmes, Pressure dependence of the electro-optic response function in partially exposed polymer dispersed ferroelectric liquid cystals, Appl. Phys. Lett. 63: 21 (1993).

    Article  ADS  Google Scholar 

  25. S. Lacroix, R. Bourbonnais, F. Gonthier and J. Bures, Tapered monomeode optical fibres:understanding large mansfer, Appl. Opt. 25: 4421 (1986).

    Article  ADS  Google Scholar 

  26. S. Lacroix, RJ. Black, C. Veilleuxand J. Lapierre, Taperedsingle-modefibes:external refactive index dependence, Appl. Opt 25: 2468 (1986).

    Article  ADS  Google Scholar 

  27. C. Veilleux, R.J. Black and J. Lapierre. Nematic liquid crystal clad tapered optical fiber with temperature sensing properties, J. Appl. Phys. 67: 6648 (1990).

    Article  ADS  Google Scholar 

  28. J.F. Henninot, D. Louvergneaux, N. Tabyrian and M. Warenghem, Controlled leakage of a tapered optical fiber with liquid crystal cladding, Mol. Cryst. Liq. Cryst. 282: 297 (1996).

    Article  Google Scholar 

  29. B. Picart, L. Dugoujon, O. Petit, C. Destrade, C. Leon, KT. Nguyen and J.P. Marcerou, Roc. SPIE 1080: 131 (1989).

    ADS  Google Scholar 

  30. J.F. Henninot and M. Warenghem, Leakography visualization of lasses in fibers and fiber optics systems using liquid crystals, to be published in Mol. Cryst. Liq Cryst..

    Google Scholar 

  31. P.K. Tien, RJ. Martin, R Wolfe, RC. LeCrew, and S.L. Blank, Switching and modulation of light in magneto-optical waveguides, Appl. Phys. Lett. 21: 394 (1972).

    Article  ADS  Google Scholar 

  32. K. Miyano and Y.R Shen, Domain pattern excited by surface acoustic waves in a nematic film, Appl. Phys. Lett. 28: 472 (1976).

    ADS  Google Scholar 

  33. K.M. Johnson, D.J. McKnight and I. Underwood, Smart spatiallight modulator using liquid crystals on silicon, IEEE J. Quantum El. 29: 699 (1993).

    Article  ADS  Google Scholar 

  34. T.G. Giallorenzi and J.P. Sheridan, Light scattering from nematic liquid crystal waveguide, J. Appl. Phys. 46: 1271 (1975).

    Article  ADS  Google Scholar 

  35. M. Green and S.J. Madden, Low loss nematic liquid crystal cored fiber waveguides, Appl. Opt. 28: 5202 (1989).

    Article  ADS  Google Scholar 

  36. T.P. Sosnowski, Polarization mode filters for integrated optics, Optics Commun. 4: 408, (1972).

    Article  ADS  Google Scholar 

  37. D.J. Chanin, Optical waveguide modulation using nematic liquid crystal, Appl. Phys. Lett. 21: 365 (1973).

    Article  ADS  Google Scholar 

  38. J.P. Sheridan, J.M. Schnur, and T.G. Giallorenzi, Electro-optic switching in low-loss liquid crystal waveguides, Appl. Phys. Lett. 22: 560 (1973).

    Article  ADS  Google Scholar 

  39. Y. Okamura, K. Kitatani and S. Yamamoto, Electro-optic leaky anisotropic waveguides using nematic liquid crystal overlayers, J. Lightw. Techn. LT-2 292 (1984).

    Article  ADS  Google Scholar 

  40. Y. Okamura, K. Kitataniand S. Yamamoto, Low-voltage driving in nematic liquid crystal overlayers waveguide, J. Lightw. Techn. LT-4: 360 (1986).

    Article  ADS  Google Scholar 

  41. B.X. Chen, X. Tong Li, Y. Limura and S. Kobayashi, High-contrat channel waveguide switch with two nematic sections of a nematic liquid crystal covering, Appl. Opt. 32: 6018 (1993).

    Article  ADS  Google Scholar 

  42. T. G. Giallorenzi, J. A. Weiss and J. P. Sheridan, Light Scattering from smectic liquid-cystal waveguides, J. Appl. Phys. 47: 1820 (1976).

    Article  ADS  Google Scholar 

  43. S.K. Lo, L.M. Galarneau, D.J. Rogers and S. RFlom, Smectic liquid crystal waveguide withcilindrical geometry, Mol. Cryst. Liq. Cryst. 201: 137 (1991).

    Article  Google Scholar 

  44. N.A. Clark and M.A. Handshy, Surface-stabilized ferroelectric liquid crystal electro-optic waveguide switch, Appl. Phys. Lett. 57: 1852 (1990).

    Article  ADS  Google Scholar 

  45. M. Ozaki, Y. Sadohara, T. Hataiand K. Yoshino, Fast optical switching in polymer waveguide using ferroelectric liquid crystal, Jpn. J. Appl. Phys 29: L843 (1990).

    Article  ADS  Google Scholar 

  46. D.B. Walker, E. N. Glytsis and T.K. Gaylord, Ferroelectric liquid crystal waveguide modulation based on a switchable uniaxial-uniaxial interface, Appl. Opt. 35: 3016 (1996).

    Article  ADS  Google Scholar 

  47. G. Scalia, D.S. Hermann, G. Abbate, L. Komitov, P. Mormile, G.C. Righini, L. Sirleto, Integrated Electro-optical switch based on a ferroelectric liquid crystal waveguide, submitted to Mol. Cryst. Liq. Cryst.

    Google Scholar 

  48. G. Abbate, F. Castaldo, L. De Stefano, E. Santamato, P. Mormile, M.A. Forastiere, G.C. Righini, L. Sirleto, Mode coupling between glassy and liquid crystal planar waveguide, Proc. SPIE 2954: 180 (1996).

    Article  ADS  Google Scholar 

  49. G.C. Righini and S. Pelli, Sol-gel glasses waveguides. J. Sol-Gel Techn. 8: 991 (97).

    Google Scholar 

  50. L. Sirleto, M. Forastiere, G.C. Righini, A. Verciani, G. Abbate, E. Santamato, P. Mormile, G. Pierattini, Integrated optical switches using liquid crystal cells, in “PHOTOMCS-96”, J.P. Raina and P.R Vaya Eds. (Tata McGraw Hill), 1: 629, (1996).

    Google Scholar 

  51. G. Abbte, P. Mormile, L. Petti, G.C. Righini, L. Sirleto, Integrated electro-optical switch based on nematic liquid crystal, Proc. SPIE 3278: 84 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sirleto, L., Abbate, G., Righini, G.C., Santamato, E. (2002). Optical Sensors and Microsystems Using Liquid Crystals. In: Martellucci, S., Chester, A.N., Mignani, A.G. (eds) Optical Sensors and Microsystems. Springer, Boston, MA. https://doi.org/10.1007/0-306-47099-3_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47099-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46380-8

  • Online ISBN: 978-0-306-47099-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics