Skip to main content

A Piezoelectric Biosensor as a Direct Affinity Sensor

  • Chapter
Optical Sensors and Microsystems

Conclusions

We have demonstrated the potential of the piezoelectric detector for real-time monitoring of adsorption process and affinity-immunoreactions in liquid phase. Results for h-Ig G adsorption indicates the relation between the surface mass and the frequency shift. The adsorption process does not bind covalently the molecules to the surface. In the case of a stable binding for the receptor to the surface is needed, a covalent immobilization is recommended. A pesticide, the 2,4-D, has been bound to the surface and an affinity reaction between the bound 2,4-D and antibodies anti-2,4-D was performed. The stability of the interaction was evident. A qualitative comparison between two different clones is provided suggesting a possible application of this device to studies of affinity constant in the analysis where a ligand and a receptor are involved. A quantitative evaluation is given for the 2,4-D analysis in tap water. The pesticide could be detected at ppb levels. What characterise the adsorption and the affinity experiments are the analysis time. When the protein adsorption occurs the process requests hours, on the contrary, when the interaction between the antigen and the antibody takes place the decrease in frequency is rapidly evident.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.G. Guilbault and J.H. Luong “Piezoelectric immunosensors and their applications in food analysis” in Food Biosensor Analysis, G. Wagner and G.G. Guilbault (eds.), Marcel Dekker, New York (1993).

    Google Scholar 

  2. G.Z. Sauerbrey, “Verwendung von schwingquarzen zur wagung dunner schichten und zur mikrowagung” Z. Physik, 155, 206 (1959).

    Article  ADS  Google Scholar 

  3. G.Z. Sauerbrey, Z. Physik, 178, 457 (1964).

    Article  ADS  Google Scholar 

  4. W.H. King, “Piezoelectric sorption detector” Anal. Chem. 36, 1735 (1964).

    Article  Google Scholar 

  5. C.W. Lee, Y.S. Fung and K. WL. Fung, “A piezoelectric crystal detector for water in gases” Anal. Chim. Acta 135, 277 (1982).

    Article  Google Scholar 

  6. T.E. Edmonds and T.S. West, Anal.Chim. Acta, 117, 147 (1982).

    Article  Google Scholar 

  7. M.H. Ho, G.G. Guilbault and B. Rietz, “Continuos detection of toluene in ambient air with a coated piezoelectric crystal” Anal Chem., 52, 1489 (1980).

    Article  Google Scholar 

  8. C.W. Lee, Y.S. Fung and K.WL. Fung, Anal. Chim. Acta, 135, 217 (1982).

    Article  Google Scholar 

  9. J.H. Luong and G.G. Guilbault, “Analytical application of piezoelectric crystal biosensors” in Biosensor Principles and Applications, L.J. Blum and P.R. Coulet (eds.), M. Dekker, New York, 107–136.

    Google Scholar 

  10. B. König and M. Grätzel, “Human granulocytes detected with a piezoimmunosensor” Anal. Letters, 26(11), 2313 (1993).

    Google Scholar 

  11. B. König and M. Grätzel, “Detection of viruses and bacteria with piezoelectric immunosensors” Anal. Letters, 26(8), 1567 (1993).

    Google Scholar 

  12. C.S. Lu, “Mass determination with piezoelectric quartz crystal resonators” J. Vac. Sci. Technol., 12, 578 (1975).

    Article  ADS  Google Scholar 

  13. T. Nomura and A. Minemura, “Behaviour of a piezoelectric quartz crystal in aqueous solution and application to determination of minute amounts of cyanide” Nippon Kagaku Kaishi, 1261 (1980).

    Google Scholar 

  14. P. Konash and G.J. Baastians, “Piezoelectric crystals as detectors in liquid chromatography” Anal. Chem., 52, 1929 (1980)

    Article  Google Scholar 

  15. T. Nomura and Okuhara, “Frequency shifts of piezoelectric quartz crystals immersed in organic liquids” Anal Chim. Acta., 141, 201 (1982).

    Google Scholar 

  16. S.Z. Yao, S.L. Dan and L.H. Nie, “Selective determination of silver in solution by adsorption on a piezoelectric quartz crystal” Anal. Chim. Acta, 209, 213 (1988).

    Article  Google Scholar 

  17. S. Kurosawa, E. Tawara, Kamo and Y. Kobatake, “Oscillating frequency of piezoelectric quartz crystal in solutions” Anal. Chim. Acta, 230, 41 (1990).

    Article  Google Scholar 

  18. T. Nomura and K. Tsuge, “Determination of silver in solution with a piezoelectric detector after electrodeposition” Anal. Chim. Acta, 169, 257 (1985).

    Article  Google Scholar 

  19. T. Nomura and M. Fujisawa, “Electrolytic determination of mercury(II) in water with a piezoelectric quartz crystal” Anal. Chim. Acta, 182, 267 (1986).

    Article  Google Scholar 

  20. H.E. Hager, “Fluid property evaluation by piezoelectric-crystals operating in the thickness shear mode” Chem. Eng. Comm., 43, 25 (1986).

    Article  MathSciNet  Google Scholar 

  21. S.J. Martin, V.E. Granstaff and G.C. Frye, “Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading” Anal. Chem., 63, 2272 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Minunni, M., Mascini, M. (2002). A Piezoelectric Biosensor as a Direct Affinity Sensor. In: Martellucci, S., Chester, A.N., Mignani, A.G. (eds) Optical Sensors and Microsystems. Springer, Boston, MA. https://doi.org/10.1007/0-306-47099-3_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-47099-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46380-8

  • Online ISBN: 978-0-306-47099-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics