Skip to main content

Carbon Nanotubes from Oxide Solid Solution: A Way to Composite Powders, Composite Materials and Isolated Nanotubes

  • Chapter
Science and Application of Nanotubes

Part of the book series: Fundamental Materials Research ((FMRE))

  • 278 Accesses

Conclusions

We have demonstrated the ability to prepare CNTS-metal-oxide powders that contain enormous amounts of CNTs, most of which are SWNTs or small MWNTs with internal and external diameters in the 0.5-5 nm range. The results confirm that only the smallest metal particles (smaller than ca. 6 nm) may catalyze the formation of SWNTs and small MWNTs and underline the need that the catalyst is in the form of such nanoparticles at a temperature which is usually above 800°C in the catalysis methods. In this way, the reduction of oxide solid solutions allows to produce metal particles at a temperature which is high enough for the hydrocarbon gas to somehow interact with them so as to form the nanotubes prior to any exaggerate particle growth.

In the case of MgO-based materials, the oxide matrix and part of the Co catalyst can be dissolved by a combination of air oxidation and mild acid treatment that does not damage the CNTS. The proposed method could be a real improvement in the low-cost, large-scale synthesis of CNTS.

Dense materials can be prepared by hot-pressing the composite powders. These ceramic-matrix composites have acceptable mechanical properties and interestingly display an electrical conductivity owing to the dispersion of a network of CNTS bundles, which could lead to some applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Journet and P. Bernier, Appl. Phys. A 67:1 (1998).

    Article  CAS  Google Scholar 

  2. Ch. Laurent, E. Flahaut, A. Peigney and A. Rousset, New J. Chem. 22:1229 (1998).

    Article  CAS  Google Scholar 

  3. V. Ivanov, A. Fonseca, J.B. Nagy, A. Lucas, P. Lambin, D. Bernaerts and X.B. Zhang, Carbon 33:1717 (1995).

    Article  Google Scholar 

  4. K Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, J. Riga and A. Lucas, Synthetic Metals 77:31 (1996).

    Article  CAS  Google Scholar 

  5. H. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert and R.E. Smalley, Chem Phys. Lett. 260:471 (1996).

    Article  CAS  Google Scholar 

  6. J. Kong, A.M. Cassell and H. Dai, Chem. Phys. Lett. 292:567 (1998).

    Article  CAS  Google Scholar 

  7. H.M. Cheng, F. Li, X. Sun, S.D.M. Brown, M.A. Pimenta, A. Marucci, G. Dresselhaus and M.S. Dresselhaus, Chem. Phys. Lett. 289:602 (1998).

    Article  CAS  Google Scholar 

  8. J.H. Hafner, M.J. Bronikowski, B.K. Azamian, P. Nikolaev, A.G. Rinzler, D.T. Colbert, K.A. Smith and R.E. Smalley, Chem. Phys. Lett. 296:195 (1998).

    Article  CAS  Google Scholar 

  9. A. Peigney, Ch. Laurent, F. Dobigeon and A. Rousset, J. Mater. Res. 12:613 (1997).

    CAS  Google Scholar 

  10. Ch. Laurent, E. Flahaut, A. Peigney and A. Rousset, J. Mater. Chem. 8:1263 (1998)

    Article  CAS  Google Scholar 

  11. A. Peigney, Ch. Laurent, O. Dumortier and A. Rousset, J. Eur. Ceram. Sac. 18:1995 (1998).

    CAS  Google Scholar 

  12. E. Flahaut, A. Govindaraj, A. Peigney, Ch. Laurent, A. Rousset and C.N.R. Rao, Chem. Phys. Lett. 300:236 (1999).

    Article  CAS  Google Scholar 

  13. A. Peigney, Ch. Laurent and A. Rousset, J. Mater. Chem. 9:1167 (1999).

    Article  CAS  Google Scholar 

  14. A. Govindaraj, E. Flahaut, Ch. Laurent, A. Peigney, A. Rousset and C.N.R. Rao, J. Mater. Res. 14:2567 (1999).

    CAS  Google Scholar 

  15. E. Flahaut, A. Peigney, Ch. Laurent and A. Rousset, Chem. Phys. Lett. (1999) submitted for publication.

    Google Scholar 

  16. X. Devaux, Ch. Laurent, M. Brieu and A. Rousset, Nanostruct. Mater. 2:339 (1993).

    CAS  Google Scholar 

  17. K.C. Patil, Bull. Mater. Sci. 16:533 (1993).

    CAS  Google Scholar 

  18. W. S. Brown and J. E. Srawley, ASTM Spec. Tech. Pub. 410, ASTM: Philadelphia (1972).

    Google Scholar 

  19. N.M. Rodriguez, J. Mater. Res. 8: 3233 (1993).

    CAS  Google Scholar 

  20. S. Iijima and T. Ichihashi, Nature 363:603 (1993).

    Article  CAS  Google Scholar 

  21. S. Seraphin and D. Zhou, Appl. Phys. Lett. 64:2087 (1994).

    Article  CAS  Google Scholar 

  22. C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee and J.E. Fisher, Nature 388:756 (1997).

    CAS  Google Scholar 

  23. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fisher and R.E. Smalley, Science 273:483 (1996).

    CAS  Google Scholar 

  24. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert and R.E. Smalley, Chem. Phys. Lett. 260:471 (1996).

    Google Scholar 

  25. P. Chen, H.B. Zhang, G.D. Lin, Q. Hong and K.R. Tsai, Carbon 35:1495 (1997).

    CAS  Google Scholar 

  26. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune and M.J. Heben, Nature 386:377 (1997).

    Article  CAS  Google Scholar 

  27. G.G. Tibbetts, M.G. Devour and E.J. Rodda, Carbon 25:367 (1987).

    CAS  Google Scholar 

  28. R.T.K. Baker, Carbon 27:315 (1989).

    Article  CAS  Google Scholar 

  29. S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov and J.B. Nagy, Science 265:635 (1994).

    CAS  Google Scholar 

  30. J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y-S. Shon, T.R. Lee, D.T. Colbert and R.E. Smalley, Science 280:1253 (1998).

    CAS  Google Scholar 

  31. A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund and R.E. Smalley, Appl.Phys. A 69:29 (1998).

    Google Scholar 

  32. E. Dujardin, T.W. Ebbesen, A. Krishnan and M.M.J. Treacy, Adv. Mater. 10:611 (1998).

    CAS  Google Scholar 

  33. Ch. Laurent, A. Peigney, O. Dumortier and A. Rousset, J. Eur. Ceram. Soc. 18:2005 (1998).

    Article  CAS  Google Scholar 

  34. X. Devaux, Ch. Laurent, M. Brieu and A. Rousset, C. R.. Acad. Sci. Paris Série II. 312:1425 (1991).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Laurent, C., Peigney, A., Flahaut, E., Bacsa, R., Rousset, A. (2002). Carbon Nanotubes from Oxide Solid Solution: A Way to Composite Powders, Composite Materials and Isolated Nanotubes. In: Thorpe, M.F., Tománek, D., Enbody, R.J. (eds) Science and Application of Nanotubes. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47098-5_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-47098-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46372-3

  • Online ISBN: 978-0-306-47098-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics