Skip to main content

Optical Implementation of Grover’s Algorithm: It’s all Done with Mirrors

  • Chapter

Abstract

The essential operations of a quantum computer can all be accomplished using only standard linear optical elements (e.g., beamsplitters, waveplates, polarizers, etc.), with the individual bits represented by different spatial orpolarization degrees of freedom. The difference from a genuine quantum computer with distinct entangleable registers is that the optical implementation requires a number of elements which grows exponentially with the number of bits. However, by “compiling” the code, and making multiple use of redundant components, the required number of elements can be substantially reduced, allowing the realization of quantum algorithms involving several bits. Here we present a simple optical implementation of Grover’s algorithm for efficiently searching a database. In our example a database of four elements is searched with a single query, in contrast to the classical expected value of 2.25 queries. It is seen that the “quantum” computer in this case is no more than an interferometer, albeit a complicated one.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79:25 (1997).

    ADS  Google Scholar 

  2. N. Gershenfeld and I. L. Chuang, Bulk spin-resonance quantum computation, Science 275:350 (1997); D. G. Cory, A. F. Fahmy, and T. F. Havel, Ensemble quantum computing by NMR-spectroscopy, Proc. Natl. Acad. Sci., USA 94: 1634 (1997).

    Article  MathSciNet  Google Scholar 

  3. I. L. Chuang, N. Gershenfeld, and M. Kubinuc, Experimental implementation of fast quantum searching, Phys. Rev. Lett., 80:3408 (1998); I. L. Chuang et al., Experimental realization of a quantum algorithm; Nature 393:143 (1998); J. A. Jones, M. Mosca, and R. H. Hansen, Implementation of a quantum search algorithm on a quantum computer, Nature 393:344 (1998).

    Article  ADS  Google Scholar 

  4. M. Reck, A. Zeilinger, H. J.Bernstein, and P. Bertani, Experimental realization of any discrete unitary operator, Phys. Rev. Lett. 73:58 (1994); S. Stenholm, Polarization coding of quantum information, Opt. Comm. 123:287 (1996); R.J.C. Spreeuw, A classical analogy of entanglement, Found. of Phys., in press, (1998).

    Article  ADS  Google Scholar 

  5. S. Takeuchi, A simple quantum computer: experimental realization of the Deutsch-Jozsa algorithm with linear optic, in: “Proc. of the 4th Workshop on Physics and Computation” (Phys Comp 96), p. 299 (1996).

    Google Scholar 

  6. J. F. Clauser and J. P. Dowling, factoring integers with Young’s N-slit interferometer, Phys. Rev. A 53:4587 (1996); J. Summhammer, Factoring and Fourier transformation with a Mach-Zehnder interferometer, Phys. Rev. A 56: 4324 (1997).

    Article  ADS  Google Scholar 

  7. N. J. Cerf, C. Adami, and P.G. Kwiat, Optical simulation of quantum logic, Phys. Rev. A 57:R1477 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  8. S. L. Braunstein, Quantum error correction for communication with linear optics, Nature 394:47 (1998).

    Article  ADS  Google Scholar 

  9. P. G. Kwiat, J. R. Mitchell, P.D. D. Schwindt, and A. G. White, All-optical implementation of Grover’s search algorithm, submitted to Phys. Rev. Lett..

    Google Scholar 

  10. M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, Tight bounds on quantum searching, Fortschr. Phys. 46:493 (1998).

    Article  ADS  Google Scholar 

  11. P. D. D. Schwindt, P. G. Kwiat, and B.-G. Englert, Quantitative wave-particle duality and non-erasing quantum erasure, submitted to Nature.

    Google Scholar 

  12. P. G. Kwiat, Hyper-entangled states, J. Mod. Opt. 44:2173 (1997).

    MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kwiat, P., Mitchell, J., Schwindt, P., White, A. (2002). Optical Implementation of Grover’s Algorithm: It’s all Done with Mirrors. In: Kumar, P., D’Ariano, G.M., Hirota, O. (eds) Quantum Communication, Computing, and Measurement 2. Springer, Boston, MA. https://doi.org/10.1007/0-306-47097-7_41

Download citation

  • DOI: https://doi.org/10.1007/0-306-47097-7_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46307-5

  • Online ISBN: 978-0-306-47097-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics