Skip to main content

Abstract

From the perspective of quantum information theory, a system so simple as one restricted to just two nonorthogonal states can be surprisingly rich in physics. In this paper, we explore the extent of this statement through a review of three topics: (1) “nonlocality without entanglement” as exhibited in binary quantum communication channels, (2) the tradeoff between information gain and state disturbance for two prescribed states, and (3) the quantitative clonability of those states. Each topic in its own way quantifies the extent to which two states are “quantum” with respect to each other, i.e., the extent to which the two together violate some classical precept. It is suggested that even toy examples such as these hold some promise for shedding light on the foundations of quantum theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Kraus, “States, Effects, and Operations,” Springer-Verlag, Berlin (1983).

    Book  MATH  Google Scholar 

  2. For a very basic result in this respect, see Theorem 6 and Section V of I. Pitowsky, Infinite and finite Gleason’s theorems and the logic of indeterminacy, J. Math, Phys. 39:218 (1998).

    Google Scholar 

  3. W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature 299:802 (1982); D. Dieks, Communication by EPR devices, Phys. Lett. A 92:271 (1982).

    Article  ADS  Google Scholar 

  4. H. P. Yuen, Amplification of quantum states and noiseless photon amplifiers, Phys. Lett. A 113:405 (1986); H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, and B. Schumacher, Noncommuting mixed states cannot be broadcast, Phys. Rev. Lett. 76:2818 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  5. C. H. Bennett, G. Brassard, and N. D. Mermin, Quantum cryptography without Bell’s theorem, Phys. Rev. Lett. 68:557 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. C. A. Fuchs, Information gain vs. state disturbance in quantum theory, Fort. der Phys. 46:535 (1998); C. A. Fuchs and A. Peres, Quantum state disturbance vs. information gain: Uncertainty relations for quantum information, Phys. Rev. A 53:2038 (1996).

    Article  ADS  Google Scholar 

  7. M. Sasaki, T. S. Usuda, O. Hirota, and A. S. Holevo, Applications of the Jaynes-Cummings model for the detection of nonorthogonal quantum states, Phys. Rev. A 53:1273 (1996).

    Article  ADS  Google Scholar 

  8. C. A. Fuchs, Nonorthogonal quantum states maximize classical information capacity, Phys. Rev. Lett. 79:1163 (1997).

    Article  ADS  Google Scholar 

  9. C. W. Helstrom, “Quantum Detection and Estimation Theory,” Academic Press, NY (1976).

    Google Scholar 

  10. C. M. Caves and C. A. Fuchs, Quantum information: How much information in a state vector?, in: “The Dilemma of Einstein, Podolsky and Rosen — 60 Years Later,” A. Mann and M. Revzen, eds., Israel Physical Society (1996).

    Google Scholar 

  11. C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, Quantum nonlocality without entanglement, quant-ph/9804053.

    Google Scholar 

  12. T. M. Cover and J. A. Thomas, “Elements of Information Theory,” Wiley, NY (1991), Sect. 8.9.

    Book  MATH  Google Scholar 

  13. A. S. Holevo, Capacity of a quantum communication channel, Prob. Info. Trans. 15:247 (1979).

    Google Scholar 

  14. A. Fujiwara and H. Nagaoka, Operational capacity and pseudoclassicality of a quantum channel, IEEE Trans. Inf. Theory 44:1071 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  15. L. B. Levitin, Optimal quantum measurements for two pure and mixed states, in: “Quantum Communications and Measurement,” V. P. Belavkin, O. Hirota, and R. L. Hudson, eds., Plenum Press, NY (1995); C. A. Fuchs and C. M. Caves, Ensemble-dependent bounds for accessible information in quantum mechanics, Phys. Rev. Lett. 73:3047 (1994).

    Google Scholar 

  16. P. Hausladen, R. Jozsa, B. Schumacher, M. Westmoreland, and W. K. Wootters, Classical information capacity of a quantum channel, Phys. Rev. A 54:1869 (1996); A. S. Holevo, The capacity of the quantum channel with general signal states, IEEE Trans. Inf. Theory 44:269 (1998); B. Schumacher and M. D. Westmoreland, Sending classical information via noisy quantum channels, Phys. Rev. A 56:131 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  17. C. A. Fuchs, “Distinguishability and Accessible Information in Quantum Theory,” Ph.D. thesis, University of New Mexico, 1996. LANL archivequant-ph/9601020.

    Google Scholar 

  18. A. Peres and W. K. Wootters, Optimal detection of quantum information, Phys. Rev. Lett. 66:1119(1991).

    Article  ADS  Google Scholar 

  19. W. Pauli, “Writings on Philosophy and Physics,” Springer-Verlag, Berlin (1995).

    Google Scholar 

  20. A. Peres, “Quantum Theory: Concepts and Methods,” Kluwer, Dordrecht (1993).

    MATH  Google Scholar 

  21. C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68:3121 (1992).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. D. Bruß D. P. DiVincenzo, A. Ekert, C. A. Fuchs, C. Macchiavello, and J. A. Smolin, Optimal universal and state-dependent quantum cloning, Phys. Rev. A 57:2368 (1998).

    Article  ADS  Google Scholar 

  23. N. D. Mermin, What is quantum mechanics trying to tell us?, Am. J. Phys. 66:753 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fuchs, C.A. (2002). Just Two Nonorthogonal Quantum States. In: Kumar, P., D’Ariano, G.M., Hirota, O. (eds) Quantum Communication, Computing, and Measurement 2. Springer, Boston, MA. https://doi.org/10.1007/0-306-47097-7_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-47097-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46307-5

  • Online ISBN: 978-0-306-47097-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics