Skip to main content

Remarks on the Determinant in Nonlinear Elasticity and Fracture Mechanics

  • Chapter
  • 645 Accesses

Abstract

The role of the determinant in ensuring local invertibility of Sobolev functions in W 1,N(Ω; ℝN) is studied. Weak continuity of minors of gradients of functions in W 1,p(Ω; ℝN) for p<N is fully characterized. Properties of the determinant are addressed within the framework of functions of bounded variation, and a change of variables formula is obtained. These results are relevant in the study of equilibria, cavitation, and fracture of nonlinear elastic materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acerbi, E.G., Bouchitté, G. and Fonseca, I. Relaxation of convex functionals and the Lavrentiev phenomenon. In preparation.

    Google Scholar 

  2. Acerbi, E. and Dal Maso., G. (1994). New lower semicontinuity results for polyconvex integrals case. Calc. Var. Partial Differential Equations, 2:329–372.

    MathSciNet  MATH  Google Scholar 

  3. Alberti, G. (1991). A Lusin type theorem for gradients. J. Fund. Anal., 100:110–118.

    MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L. (1994). On the lower semicontinuity of quasiconvex integrals in SBV(Ω; ℝk) Nonlinear Anal, 23:691–702.

    Article  MathSciNet  Google Scholar 

  5. Ambrosio, L. and Dal Maso, G. (1990). A general chain rule for distributional derivatives. Proc. Amer. Math. Soc., 108:691–702.

    MathSciNet  MATH  Google Scholar 

  6. Ambrosio, L. and Dal Maso, G. (1992). On the representation in BV(Ω; ℝm)of quasiconvex integrals. J. Fund. Anal., 109:76–97.

    MATH  Google Scholar 

  7. Acerbi, E. and Fusco, N. (1984). New lower semicontinuity results for polyconvex integrals case. Arch. Rational Mech. Anal., 86:125–145.

    Article  MathSciNet  MATH  Google Scholar 

  8. Ball, J.M. (1977). Convexityconditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal., 63:337–403.

    MATH  Google Scholar 

  9. Ball, J.M. (1988). Globalinvertibility of Sobolevfunctions and the interpenetration of the matter. Proc. Roy. Soc. Edinburgh, 88A:315–328.

    Google Scholar 

  10. Ball, J.M. and Murat, F. (1984). W 1,p quasiconvexity and variational problems for multiple integrals. J. Fund. Anal., 58:225–253.

    MathSciNet  MATH  Google Scholar 

  11. Bojarski, B. and Hajlasz, P. (1993). Pointwise inequalities for Sobolev functions and some applications. Studia Math., 106:77–92.

    MathSciNet  MATH  Google Scholar 

  12. Bouchitté, G., Fonseca, I. and Malý, J. (1998). The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh, 128A:463–479.

    Google Scholar 

  13. Braides, A. (1998). Approximation of Free-Discontinuity Problems. Lecture Notes in Mathematics, Springer Verlag, Berlin.

    MATH  Google Scholar 

  14. Braides, A. and Coscia, A. (1994). The interaction between bulk energy and surface energy in multiple integrals. Proc. Royal Soc. Edinburgh, 124A:737–756.

    MathSciNet  Google Scholar 

  15. Braides, A. and Chiado Piat, V. (1996). Integral representation results for functionals defined on SBV(Ω; ℝm). J. Math. Pures Appl., 75:595–626.

    MathSciNet  MATH  Google Scholar 

  16. Celada, P. and Dal Maso, G. (1994). Further remarks on the lower semicontinuity of polyconvex integrals. Ann. Inst. H. Poincare, Anal. Non Linéaire, 11:661–691.

    MATH  Google Scholar 

  17. Choksi, R. and Fonseca, I. (1997). A change of variables formula for mappings in BV. Proc. Amer. Math. Soc., 125:2065–2072.

    Article  MathSciNet  MATH  Google Scholar 

  18. Ciarlet, P.G. and Nečas J. (1987). Injectivity and self contact in non linear elasticity. Arch. Rational Mech. Anal., 97:171–188.

    Article  MathSciNet  Google Scholar 

  19. Coifman, R. Lions, P.-L., Meyer, Y. and Semmes, S. (1989). Compacité par compensation et espaces de Hardy. CRAS Paris, 309:945–949.

    MathSciNet  MATH  Google Scholar 

  20. Dacorogna, B. (1989). Direct Methods in Calculus of Variations. Appl. Math. Sciences 78, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  21. Dacorogna, B. and Marcellini, P. (1990). Semicontinuité pour des intégrandes polyconvexes sans continuité des determinants. C. R. Acad. Sci. Paris Sér. I Math., 311, 6:393–396.

    MathSciNet  MATH  Google Scholar 

  22. Dacorogna, B. and Murat, F. (1992). On the optimality of certain Sobolev exponents for the weak continuity of determinants. J. Fund. Anal., 105:42–62.

    MathSciNet  MATH  Google Scholar 

  23. Dal Maso, G. and Sbordone, C. (1995). Weak lower semicontinuity of polyconvex integrals: a borderline case. Math. Z., 218:603–609.

    MathSciNet  MATH  Google Scholar 

  24. De Giorgi, E. and Ambrosio, L. (1988). Un nuovo funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 82:199–210.

    MATH  Google Scholar 

  25. Evans, L.C. and Gariepy, R.F. (1992). Measure Theory and Fine Properties of Functions. CRC Press.

    Google Scholar 

  26. Federer, H. (1996). Geometric Measure Theory. Springer, (Second edition 1996).

    Google Scholar 

  27. Fonseca, I. and Francfort, G. (1995).Relaxation in BV versus quasiconvexification in W 1,p a model for the interaction between damage and fracture. Calc. Var. Partial Differential Equations, 3:407–446.

    Article  MathSciNet  MATH  Google Scholar 

  28. Fonseca, I. and Gangbo, W. (1995). Local invertibility of Sobolev functions. SIAM J. Math. Anal., 26,2:280–304.

    Article  MathSciNet  MATH  Google Scholar 

  29. Fonseca, I. and Gangbo, W. (1995). Degree Theory in Analysis and Applications. Clarendon Press, Oxford.

    MATH  Google Scholar 

  30. Fonseca, I. and Leoni, G. On lower semicontinuity and relaxation. To appear.

    Google Scholar 

  31. Fonseca, I. and Malý, J. (1997). Relaxation of Multiple Integrals below the growth exponent. Ann. Inst. H. Poincaré. Anal. Non Linéaire, 14,3:309–338.

    MATH  Google Scholar 

  32. Fonseca, I. and Malý, J. Weak continuity of jacobian integrals. In preparation.

    Google Scholar 

  33. Fonseca, I. and Marcellini, P. (1997). Relaxation of multiple integrals in subcritical Sobolev spaces. J. Geom. Anal., 7,1:57–81.

    MathSciNet  MATH  Google Scholar 

  34. Fonseca, I. and Müller, S. (1993). Relaxation of quasiconvex functionals in BV((Ω,ℝp) for integrands f(x,u,∇u). Arch. Rational Mech. Anal., 123:1–49.

    Article  MathSciNet  MATH  Google Scholar 

  35. Fonseca, I. and Parry, G. (1992). Equilibrium configurations of defective crystals. Arch. Rational Mech. Anal., 120:245–283.

    Article  MathSciNet  MATH  Google Scholar 

  36. Fusco, N. and Hutchinson, J.E. (1995). A direct proof for lower semicontinuity of polyconvex functionals. Manuscripta Math., 85:35–50.

    MathSciNet  Google Scholar 

  37. Gangbo, W. (1994). On the weak lower semicontinuity of energies with polyconvex integrands. J. Math. Pures Appl., 73, 5:455–469.

    MathSciNet  MATH  Google Scholar 

  38. Giaquinta, M., Modica, G. and Souček J. (1990). Cartesian currents, weak dipheomorphisms and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 106 (1989), 97–159.Erratum and addendum. Arch. Rational Mech. Anal., 109:385–592.

    Google Scholar 

  39. Giaquinta, M., Modica, G. and Souček J. (1989). Cartesian Currents and Variational Problems for Mappings into Spheres. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 16:393–485.

    MathSciNet  MATH  Google Scholar 

  40. Giaquinta, M., Modica, G. and Souček J. (1990). Liquid crystals: relaxed energies, dipoles, singular lines and singular points. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17,3:415–437.

    MathSciNet  MATH  Google Scholar 

  41. Giaquinta, M., Modica, G. and Souček J. (1995). Cartesian Currents in the Calculus of Variations I, II. Ergebnisse der Mathematik und Ihrer Grenzgebiete Vol. 38, Springer, Berlin-Heidelberg.

    Google Scholar 

  42. Hajlasz, P. Note on weak approximation of minors. Ann. Inst. H. Poincaré, to appear.

    Google Scholar 

  43. Heinonen, J. and Koskela, P. (1993). Sobolev mappings with integral dilatations. Arch. Rational Mech. Anal., 125:81–97.

    Article  MathSciNet  MATH  Google Scholar 

  44. Iwaniec, T. and Sverák V. (1993). On mappings with integrable dilatation. Proc. Amer. Math. Soc., 118,1:181–188.

    MathSciNet  MATH  Google Scholar 

  45. Malý, J. (1993). Weak lower semicontinuity of polyconvex integrals. Proc. Roy. Soc. Edinburgh, 123A:681–691.

    Google Scholar 

  46. Malý, J. (1994). Weak lower semicontinuity of quasiconvex integrals. Mannscripta Math., 85:419–428.

    MATH  Google Scholar 

  47. Malý, J. (1994). The area formula for W 1,n-mappings. Comment. Math. Univ. Carolin., 35,2:291–298.

    MathSciNet  MATH  Google Scholar 

  48. Malý, J. and Martio, O. (1995). Lusin’s condition (N) and mappings of the class. W 1,n. J. Reine Angew. Math., 458:19–36.

    MathSciNet  MATH  Google Scholar 

  49. Marcellini, P. (1985).Approximation of quasiconvex functions and lower semicontinuity of multiple quasiconvex integrals. Manuscripta Math., 51:1–28.

    Article  MathSciNet  MATH  Google Scholar 

  50. Martio, O. and Ziemer, W.P.(1992). Lusin’s condition (N) and mappings with non-negative jacobians. Michigan Math., J., 39:495–508.

    MathSciNet  MATH  Google Scholar 

  51. Morrey, C.B. (1996). Multiple Integrals in the Calculus of Variations. Springer.

    Google Scholar 

  52. Müller, S. (1988). Weak continuity of determinants and nonlinear elasticity. C. R. Acad. Sci. Paris Ser. I Math., 307:501–506.

    MathSciNet  MATH  Google Scholar 

  53. Müller, S. (1990). Det=det. A Remark on the distributional determinant. C. R. Acad. Sci. Paris Ser. I Math., 311:13–17.

    MathSciNet  MATH  Google Scholar 

  54. Müller, S. ( 1993). On the singular support of the distributional determinant. Ann. Inst. H. Poincare Anal. Non-Lineaire, 10:657–696.

    MathSciNet  MATH  Google Scholar 

  55. Müller, S., Tang, Q. and Yan, S.B. (1994). On a new class of elastic deformations not allowing for cavitation. Ann.-Inst.-H.-Poincare-Anal.-Non-Lineaire, 11:217–243.

    MathSciNet  MATH  Google Scholar 

  56. Murat, F. (1981). Compacité par compensation: condition necessaire et suffisante de continuité faible sous une hypothése de rang constant. Ann. Scuola Norm. Sup. Pisa, 4,8:68–102.

    Google Scholar 

  57. Reshetnyak, Y. (1968).Weak convergence and completely additive vector functions on a set. Sibir. Math., 9:1039–1045.

    MATH  Google Scholar 

  58. Stein, E. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press.

    Google Scholar 

  59. Šveràk V. (1988). Regularity properties of deformations with finite energy. Arch. Rational Mech. Anal., 100:105–127.

    MathSciNet  MATH  Google Scholar 

  60. Tang, Q. (1988). Almost-everywhere injectivity in nonlinear elasticity. Proc. Roy. Soc. Edinburgh, 109:79–95.

    MATH  Google Scholar 

  61. Tartar, L. (1979). Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. IV (ed. R. Knops), Pitman Res. Notes in Math., 39:136–212.

    Google Scholar 

  62. Ziemer, W.P. (1970). Weakly Differentiable Functions. Springer-Verlag, Berlin 1989.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fonseca, I., Malý, J. (2002). Remarks on the Determinant in Nonlinear Elasticity and Fracture Mechanics. In: Sequeira, A., da Veiga, H.B., Videman, J.H. (eds) Applied Nonlinear Analysis. Springer, Boston, MA. https://doi.org/10.1007/0-306-47096-9_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-47096-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46303-7

  • Online ISBN: 978-0-306-47096-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics