Skip to main content

Asymptotic Behaviour of Compressible Maxwell Fluids in Exterior Domains

  • Chapter
  • 646 Accesses

Abstract

This article is concerned with the steady motion of a compressible viscoelastic non-Newtonian fluid of Maxwell type around a three-dimensional rigid body. Results on existence, uniqueness and asymptotic behaviour of the solution are obtained for small data.

The method of proof is based on an appropriate decomposition of the original nonlinear set of equations into auxiliary problems (Neumann problem for the Laplacian, Stokes problem and two transport equations) and on a suitable fixed point argument. The asymptotic decay of the solution, as regards the velocity and pressure, is defined by the linearized part, i.e. by the asymptotic behaviour of the fundamental solution of the Stokes system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cioranescu, D. and Ouazar, E.H. (1984). Existence and uniqueness for fluids of second grade. Collège de France Seminars, Pitman Research Notes in Mathematics Pitman, Boston, 109:178–197.

    Google Scholar 

  2. Edwards, B.J. and Beris, A.N. (1990). Remarks concerning compressible viscoelastic fluid models. J. Non-Newtonian Fluid Mech., 36:411–417.

    Google Scholar 

  3. Galdi, G.P. (1994). An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Springer Tracts in Natural Philosophy, Vols. 38 and 39, Springer, New York.

    Google Scholar 

  4. Galdi, G.P. (1995). Mathematical theory of second-grade fluids. G.P. Galdi (ed.) Stability and Wave Propagation in Fluids, CISM Courses and Lectures Springer, New York, 344:66–103.

    Google Scholar 

  5. Galdi, G.P., Sequeira, A. and Videman, J.H. (1997). Steady motions of a second-grade fluid in an exterior domain, Adv. Math. Sci. Appl., 7:977–995.

    MathSciNet  Google Scholar 

  6. Galdi, G.P. and Simader, Ch. (1990). Existence, uniqueness and Lq estimates for the Stokes problem in an exterior domain. Arch. Rational Mech. Anal., 112:291–318.

    MathSciNet  Google Scholar 

  7. Guillopé, C. and Saut, J.-C. (1990). Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Analysis, Theory, Methods & Applications, 15:849–869.

    Google Scholar 

  8. Matušů-Nečasová, Š, Sequeira A. and Videman, J.H. (1999). Existence of classical solutions for compressible viscoelastic fluids of Oldroyd type past an obstacle. Mathematical Methods in the Applied Sciences, 22:449–460.

    MathSciNet  Google Scholar 

  9. Matušů-Nečasová, Š. Sequeira A. and Videman, J.H. Steady motion of compressible viscoelastic fluids of Oldroyd type in exterior domain. In preparation.

    Google Scholar 

  10. Nečas, J, (1967). Les Méthodes Directes en laThéorie des Equations Elliptiques. Masson Paris.

    Google Scholar 

  11. Novotný, A. (1998). On the steady transport equation. Málek, J., Nečas, J and Rokyta, M. (eds.) Advanced Topics in Theoretical Fluid Mechanics. Pitman Research Notes in Mathematics Series 392, Longman, Essex, 118–146.

    Google Scholar 

  12. Novotný, A. and Padula, M. (1994). Lp-approach to steady flows of viscous compressible fluids in exteriordomains. Arch. Rational Mech. Anal., 126:243–297.

    MathSciNet  Google Scholar 

  13. Novotný, A. and Padula, M. (1996). Physically reasonable solutions to steady compressible Navier-Stokes equations in 3D-exterior domains (v=0). J. Math. Kyoto Univ., 36(2):389–422.

    MathSciNet  Google Scholar 

  14. Novotný, A., Sequeira, A. and Videman, J.H. (1997). Existence of threedi mensional flows of second-grade fluids past an obstacle. Nonlinear Analysis, Theory, Methods & Applications, 30:3051–3058.

    Google Scholar 

  15. Novotný, A., Sequeira, A. and Videman, J.H. Steady Motions of Viscoelastic Fluids in 3-D Exterior Domains-Existence, Uniqueness and Asymptotic Behaviour. Arch. Rational Mech. Anal. In press.

    Google Scholar 

  16. Oldroyd, J.G. (1950). On the formulation of rheological equations of state. Proc. Roy. Soc. London, A200:523–541.

    MathSciNet  Google Scholar 

  17. Phelan, F.R., Malone, M.F. and Winter, H.H. (1989). A purely hyperbolic model for unsteady viscoelastic flow. J. Non-Newtonian Fluid Mech., 32:197–224.

    Google Scholar 

  18. Rajagopal, K.R. (1993). Mechanics of non-Newtonian fluids. Galdi, G.P. and Nečas, J. (eds.) Recent Developments in Theoretical Fluid Mechanics. Pitman Research Notes in Mathematics, 291:129–162.

    Google Scholar 

  19. Renardy, M., Hrusa, W.J. and Nohel, J.A. (1987). Mathematical Problems in Viscoetasticity. Longman, New York.

    Google Scholar 

  20. Renardy, M. (1985). Existence of Slow Steady Flows of Viscoelastic Fluids with Differential Constitutive Equations, ZAMM, 65:449–451.

    MathSciNet  MATH  Google Scholar 

  21. Renardy, M. (1988). Recent advances in the mathematical theory of steady flow of viscoelastic fluids. J. Non-Newtonian Fluid Mech., 29:11–24.

    MATH  Google Scholar 

  22. Schowalter, W.R. (1978). Mechanics of Non-Newtonian Fluids. Pergamon Press, New York.

    Google Scholar 

  23. Simader, C. (1990). The weak Dirichlet and Neumann problem for the Laplacian in Lq for bounded and exterior domains. Applications in Nonlinear analysis, function spaces and applications (editors: Krbec, Kufner, Opic, Rákosník ) Leipzig, Teubner, 4:180–223.

    Google Scholar 

  24. Smirnov, A. (1964). A course of higher mathematics. Pergamon Press, Addison-Wesley.

    Google Scholar 

  25. Stein, E. (1957). Note on singular integrals. Proc. Am. Math. Soc., 8:250–254.

    MATH  Google Scholar 

  26. Sy, M.H. (1996). Contributions à ľétude mathématique des problèmes issues de la mécanique des fluides viscoélastiques. Lois de comportement de type intégral ou différentiel. Thèse ďUniversité de Paris-Sud, Orsay.

    Google Scholar 

  27. Talhouk, R. (1995). Écoulements stationnaires de fluides viscoÙlastiques faiblement compressibles. C. R. Acad. Sci. Paris, 320:1025–1030.

    MathSciNet  MATH  Google Scholar 

  28. Truesdell, C. and Noll, W. (1992). The Nonlinear Field Theories of Mechanics. 2nd edition, Springer, Berlin.

    Google Scholar 

  29. Videman, J.H. (1997). Mathematical Analysis of Viscoelastic Non-Newtonian Fluids. PhD Thesis, Instituto Superior Técnico, Lisbon.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Matušů-Nečasová, S., Sequeira, A., Videman, J.H. (2002). Asymptotic Behaviour of Compressible Maxwell Fluids in Exterior Domains. In: Sequeira, A., da Veiga, H.B., Videman, J.H. (eds) Applied Nonlinear Analysis. Springer, Boston, MA. https://doi.org/10.1007/0-306-47096-9_25

Download citation

  • DOI: https://doi.org/10.1007/0-306-47096-9_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46303-7

  • Online ISBN: 978-0-306-47096-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics