Skip to main content

Peculiarities of the Scanning Tunneling Microscopy Probe on Porous Gallium Phosphide

  • Chapter
Book cover Atomic Force Microscopy/Scanning Tunneling Microscopy 3
  • 559 Accesses

Abstract

We consider scanning tunneling microscopy (STM) probe on porous GaP. Among STM effects causing image distortions, we distinguish tip effects and analyze tip shape effect, lateral effect and tip bending. We estimate maximum errors induced by these effects and perform image processing and analysis. Vital measures necessary for the STM probe on the porous matter are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.T Canham. Silicon quantum wire may fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57 (IO), 1046–1048 (1990).

    CAS  Google Scholar 

  2. A. Anedda, A. Serpi, V.A. Karavanskii, I.M. Tiginyanu, and V.M. Ichizli. Time resolved blue and ultraviolet photoluminescence in porous Gap, Appl. Phys. Lett. 67 (22), 3316–3318 (1995).

    Article  CAS  Google Scholar 

  3. C.-H. Lin, S.-C. Lee, and Y.-F. Chen. Morphologies and photoluminescence of porous silicon under different etching and oxidation conditions, J. Appl. Phys. 75 (12), 7728–7736 (1994).

    CAS  Google Scholar 

  4. B.H. Erné, D. Vanmaekelbergh, and J.J. Kelly. Morphology and Strongly Enhance Photoresponse of GaP Electrodes Made Porous by Anodic Etching, J. Electrochem. Soc. 143 (1), 305–314 (1996).

    Google Scholar 

  5. I.M. Tiginyanu, C. Schwab, J.-J. Grob, B. Prévot, H.L. Hartnagel, A. Vogt, G. Irner, and J. Monecke. Ion implantation as a tool for controlling the morphology of porous gallium phosphide, Appl. Phys. Lett. 71 (26), 3829–3831 (1997).

    Article  CAS  Google Scholar 

  6. Ph. Dumas, M. Gu, C. Syrykh, A. Hallimaoui, F. Salvan, J.K. Gimzewski, and R.R. Schlittler. Photon spectroscopy, mapping, and topography of 85% porous silicon, J. Vac. Sci. Technol. B 12 (3), 2064–2066 (1994).

    Google Scholar 

  7. M. Enachescu, E. Hartmann, and F. Koch. Stable nanostructuring of ultrathin porous silicon films by scanning tunneling microscopy, J. Appl. Phys. 79 (6), 2948–2953 (1996).

    Article  CAS  Google Scholar 

  8. O. Teschke. Visualization of nanostructure porous silicon by a combination of transmission electron microscopy and atomic force microscopy, Appl. Phys. Lett. 68 (5), 2129–2131 (1996).

    Article  CAS  Google Scholar 

  9. T. Fujii, M. Yamaguchi, M. Suzuki, H. Yamada, and K. Nakayama. Error budget of step height and pitch measurement using a scanning tunneling microscope with a three-dimensional interferometer, J. Vac. Sci. Technol. B 15 (4), 1494–1497 (1997).

    Google Scholar 

  10. S.J. Fang, S. Haplepete, W. Chen, C.R. Helms, and H. Edwards. Analyzing atomic force microscopy images using spectral methods, J. Appl. Phys. 82 (12), 5891–5898 (1997).

    Article  CAS  Google Scholar 

  11. J.E. Castle and P.A. Zhdan. Characterization of surface topography by SEM and SFM: problems and solutions, J. Phys. D: Appl. Phys. 30,722–740 (1997).

    Article  CAS  Google Scholar 

  12. K.L. Westra and D.J. Thomson. Effect of tip shape on surface roughness measurements from atomic force microscopy images of thin films, J. Vac. Sci. Technol. B 13 (2), 344–349 (1995).

    Google Scholar 

  13. R. Schlaf, D. Louder, M.W. Nelson, and B.A. Parkinson. Influence of electrostatic forces on the investigation of dopant atoms in layered semiconductors by scanning tunneling microscopy/spectroscopy and atomic force microscopy, J. Vac. Sci. Technol. A 15 (3), 1466–1472 (1997).

    Google Scholar 

  14. M. Nagase, H. Namatsu, K. Kurihara, K. Iwadate, and K. Murase. Metrology of atomic force microscopy for Si nano-structures, Jpn. J. Appl. Phys. 34,3382–3387 (1995).

    Article  CAS  Google Scholar 

  15. C. Gerthsen, H.O. Kneser, and H. Vogel, Physik. Springer-Verlag. Berlin, p. 117 (1982)

    Google Scholar 

  16. E.C.W. Leung, P. Markiewicz, and M.C. Goh. Identification and visualization of questionable regions in atomic force, J. Vac. Sci. Technol. B 15 (2), 181–185 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ichizli, V., Droba, M., Vogt, A., Tiginyanu, I., Hartnagel, H. (2002). Peculiarities of the Scanning Tunneling Microscopy Probe on Porous Gallium Phosphide. In: Cohen, S.H., Lightbody, M.L. (eds) Atomic Force Microscopy/Scanning Tunneling Microscopy 3. Springer, Boston, MA. https://doi.org/10.1007/0-306-47095-0_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-47095-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46297-9

  • Online ISBN: 978-0-306-47095-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics